Coursework on Generative Adversarial Networks

Alexis Othonos

Koral Hassan

Imperial College London
{a04818, kbhl5}@ic.ac.uk

Abstract

The performance of the DCGAN and CGAN are mea-
sured with regards to different parameters, such as archi-
tecture, normalisation, number of epochs and the ratio of
G and D training. The CGANs were evaluated based on
the inception score of their generated images. In CGAN
the small depth architecture showed the best results with in-
ception score of 0.9654. The classifier was then retrained
with generated data but showed poor results with accuracy
dropping to 0.98.

1. Dataset

The MNIST dataset [[1] is used for training and testing
purposes. The dataset contains grayscale images of hand-
written digits. Each image is 28x28 pixels. Some exemplar
datapoints are shown in Appendix [A]

The dataset contains Ni.q;, = 60000 training images
and Ny = 10000 testing images. In some tests, the train-
ing set is further split into training and validation sets with
a ratio of five-to-one. That is, the training set is made up
of randomly sampled (without replacement) 50,000 images,
while the validation is made up of the rest 10,000 images.

1.1. Preprocessing

In the original dataset, each pixel has a value between
0 and 255. The values are normalised between -1 and 1 in
order to make the training process easier.

2 X P/L’Iel’ltTLTLO"’ﬂ’I,

-1
250

Pizelyorm =

2. DCGAN & CGAN

We first use Deep Convolutional Generative Adversar-
ial Networks (DCGAN’s) for generating images. The ar-
chitectures of the Generator and Discriminator models can
be seen in Appendix |[Bl The architectures are used for both
DCGAN and CGAN training for comparison. The discrimi-
nator model is shown in Figure[TT] and 3 different generator
architectures shown in Figure[T2]

Digit: 0 Digit:1 Digit2 Digt:3 Digit:4
E
. : "

Digit:5 Digit:6 Digit:7 Digt:8 Digit:9

HAAGG

(b)

Figure 1: Images generated from the best performing archi-
tecture for (a) DCGAN and (b) CGAN

2.1. Depth

The binary cross-entropy of DCGAN losses with the 3
different generators after 20 epochs is shown in Table
Medium depth achieves the lowest loss for both the dis-
criminator and the generator, with outputs shown in Figure
[Il The resulting generated images can be observed in Ap-
pendix [C] The above results show that the architecture is
very important to the success of the network. Small archi-
tectures may fail to converge to a good solution, while larger
ones may require a lot of training be acceptable. On the
contrary, the CGAN network performs better with a smaller
architecture. This may be due the labels introducing addi-
tional constraints to the generator. The generator then needs
fewer weights to store as the intraclass correlation is smaller
than the interclass correlation. That is the same digit sam-
ples should look similar when compared to different digits.
Therefore, the CGAN can reach” a conclusion faster with
the more specific samples. The comparison of the CGAN
models mad by evaluating their closeness to the real data
and is further analysed in the Inception Score section.

For the reasons explained above, the medium depth
model will be chosen for the DCGAN tests while the small
model is used for the CGAN.

2.2. Number of Epochs

We ran the network for 100 epochs and recorded the
model weights for the DCGAN. Figure [2] shows the loss

1.8 — Discriminant

| Small Depth | Medium Depth | Large Depth
Discriminant 5.5 0.31 1.0
Generator 10.1 1.3 16

Generator

1.6 4

Table 1: Loss of different generator models.

of both the discriminator and generator. Appendix [D|shows
the images produced at various epochs. We can see that by
epoch 20 the generated images already look believable to a
human.

—— Discriminant
Generator

/-——__\-‘/\
|

N

20 40 60 80 100
Epoch

Figure 2: Loss varying as further epochs are computed.

2.3. G to D Training Ratio

We see that the discriminator initially outpaces the gen-
erator. This might be due to the fact that at every itera-
tion, the discriminator technically trains twice as much as
the generator; first on the authentic images batch, and then
again on the generated images batch. To balance the gen-
erator and discriminator, we ran another training up to 50
epochs where we trained G twice at each iteration as well.
The results of this can be seen in Figure 3]

We see the quality of the images generated with the
different generator to discriminator training ratios in Ap-
pendix [El It does not make a significant difference relative
to the extra computation time and it seems that our origi-
nal method of training the generator once for every batch is
better.

2.4. Batch Normalisation

The importance of batch normalisation can be demon-
strated in Figure [for a DCGAN and a CGAN network. It
can be observed that both, DCGAN and CGAN have failed
to converge when the normalisation layers are removed.
The poor performance is possibly due to the networks being
unable to “adapt” to the high valued outputs of the convo-
lutional layers. This means that the network would require
a lot more training epochs to adapt the weights to the bias

144

124

0.8 9
0.6 q
0.4 1 /\’V\
0.2 1
10 20 30 Y 50
Epoch

Figure 3: Loss varying as further epochs are computed.
Generator trained twice per iteration.

DL ER B A BN |
Digt0 Digl Digh2 Digt:3 Digtié

m f-l‘ m‘ "K.‘ m{ q gtl Digh2 Digt q

'h'l A 'R MR ERIN | L b

vl et Tt P!

LM L oLy LY

(AR AR

oy . . Digt:5 Digt:6 Digit:7 Digt:8 Dig:9

.

1
RN RN
'li ‘! .- 'u' 'u‘ :; 5
sunwe HHHE
(@) (b)
Figure 4: Results without batch normalisation for (a) DC-

GAN and (b) CGAN

appropriately or fail to converge entirely, as is the case in
the figure.

=S EELS
—|lols |
[l N fw
slojalslo
CESNS

Figure 5: DCGAN generated images demonstrating mode
collapse.

2.5. Mode Collapse

The DCGAN might be creating realistic sample in-
stances after a sufficient amount of training, however, these

instances could be relatively close to each other or may
be generate a disproportionate amount of specific digits, as
can be seen in Figure 5} This issue is addressed with the
CGAN, where the labels are used to ensure that interclass
images (different digits) are not identical. This however
doesn’t mean that the intraclass (same digit) images have
much variation. With the inception score, the performance
of the CGAN generated images is evaluated in regards to
how recognisable the generated images are when compared
to real data. This is still not addressing the ’closeness’ of in-
traclass images. This is further analysed in the Conlcusions
and Discussion section.

3. Inception Score

A classifier is trained with real data for 12 epochs and
can achieve a test accuracy of 0.992, as seen in Figure @
The classifier is then used to evaluate generated samples of
different CGAN models. The percentage of accurate pre-
dictions of the classifier can be used to evaluate the perfor-
mance of the CGAN models. In the following test, the in-
ception scores of the three architectures - mentioned above
- are evaluated, and the results can be seen in Table

Model accuracy

| — train I
test

Epoch

Figure 6: Train history of classifier

] | Small Depth | Medium Depth | Large Depth |

[Accuracy | 09654 | 09469 | 0.8

|

Table 2: Inception score of different CGAN architectures

As can be seen on Table 2] the small depth CGAN is
the most recognisable by the classifier, followed closely by
the medium depth architecture. The largest architecture has
poor performance probably due to small number of epochs
and a poor layer design. The resulting images can be seen
in Appendix [H

Another method to evaluate the performance

4. CGAN Classifier

A possible way to increase the performance of a classi-
fier is to incorporate a number of CGAN generated images
in the training set.

To test this, a classifier was trained with a data set of
50,000 images with increasing percentages of generated im-
ages. All classifiers were trained for the same amount of
epochs and the test was repeated many times, averaging the
results to reduce variance. Additionally, the generated im-
ages were sampled from a pre-traind CGAN for each test.
As can be seen in Figure[7] the performance of the classifier
drops when as the ratio of generated images increases. This
might be due to the quality of images that are generated,
however, even for a fully generated dataset, the accuracy of
the classifier is around 0.95 which is relatively good.

0.98 4

Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Gereratage image ratio

Figure 7: Classifier accuracy for ratio of generated vs real
images.

Ideally the training set of real images should not de-
crease. Instead, the training set should be reinforced with
the generated images to create an overall better classifier.
In the following test, a pre-trained classifier is trained again
for 5 epochs and is compared with a pre-trained classifier
that is trained with fully generated dataset. As can be seen
in Figure [8] the validation accuracy of the generated data
set retrained classifier, however, the training accuracy is in-
creasing sharply as can be observed in Figure 9] The con-
clusion from these results is that the generated images have
poor inception score, meaning that they are all closely re-
lated, and as such the classifier can be quickly retrained to
overfit on those examples without the ability to generalise
on the real data.

5. Conclusion and Discussion

The DCGAN and CGAN are useful in computer vision
applications. The GANs approximate the distributions that
are implied the data, as they may self evident, due to the
high dimensionality of images. If the GAN is trained cor-

0.9975 4
—— Real data

Generateddata — 00—
0.9950 4

0.9925 q
0.9900 1

0.9875 4

Accuracy

0.9850

0.9825

0.9800 1

0.0 0.5 10 15 2.0 25 3.0 35 4.0
Epochs

Figure 8: Validation accuracy for classifier re-training

— Real data
0.998 - Generated data

0.996

0.994 /

/

Accuracy

0.992 4

0.990 §

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Epochs

Figure 9: Training accuracy for classifier re-training

rectly, it can be used to train a classifier with a more repre-
sentative distribution of the data, allowing the classifier to
generalise more effectively. Unfortunately, in the above ex-
periments, the improvement of a classifier was not achieved.
During the classifier retraining, the generated data set re-
sulted in model over-fitting. This means that the generated
images were closely correlated. This probably is caused
due to the small architecture of the CGAN. However, when
comparing results from the CGAN generated images, the
smaller architecture results would look better. Evidently,
looking at generated samples is not an appropriate way to
judge inception scores. For this reason, it is concluded that
a deeper, and better designed architecture, trained for more
epochs, is required for the CGAN to work effectively.

The inception score may provide an idea of the CGAN
performance, in regards to how ’close’ the generated im-
ages are to the real data. A different measure is proposed:
the Nearest Neighbour of a generated image can be found,
or the Mean Square Error between the generated image and
the real images of the same class. This will reveal if the
generated images are 'too close’ to the real data. The pro-

posed measure can be used in conjunction with the initial in-
ception score measurement so that an image can be judged
based on how different it is to the real data while still main-
taining a good recognisability.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278-2324, 1998.

6. Appendix
Appendix A. Images from Training Set

label =5 label =

&

)
o
L]
I

N
@
o
)
I

e
1)
o
o
I

w
@
(=
L3
I

[
@
o
®
I

s

label =

Figure 10: MNIST images and their corresponding labels.

Appendix B. DCGAN Model Architectures

25.1)

put. | Moue, 14, 14,64
mlization_L: BatcliNonualization
- - auput: | Mone, 14, 11, 61)

None, 14,14, 64)
[one, 114,64 |

N o T 160

input. | (None, 5, 5, 128)
output. | (None. 5

bately_noralization_2: BatcNomalzation

put._| (¥one, 5, 5, 125)
output: | (one. 2.2, 128)

max_pooling2d_L: MaxPoolg2D

[t [2100 |
g

e | o 0|

input_| (None, 236)

bateh_nomalzation_3: BatclNomalization
- - output: | (None. 256)

i w0 |

"

dense 2 Dense [220 [Qe 39|
.

Figure 11: Discriminator Architecture

o |

aput:_| @lone, 5017)
batclh_nomualization_1: BatclNormalzation
- - ot | (o, 50176)

[— e, 170
ot e 0

it | one. 7.7, 512)
output: | (oue, 7.7, 512)

BatelNomnlzation

Noue. 7.7.512)

.| loue.
ormuization_3 BatchNomalization || T
ot | (o,

[[0 |

2007433530720

| (None. 7.7, 125)
7,128

output batel nonualization 4 BatclNomualzation

output: | (ome,

npur_| (None, 627

output_| one, 6272)

bateh

tormalization_L: BatchNormlization

put._| @lone. 7.7 64)
gt | (None. 7.7 Diely_omatzaion_3: BatclNormazation
LA Lo - ot | (Noe 7.7 01)

ouput | (Noe. 14 14, 128)

p_sampling2d._L UpSamplng2D

.
i A

v
o
one 14,1464

Noue 11, 14.61)

bateh_nomalzation_3: Batchomaizaton [~
cunpur | oe. 14, 14,64

‘ e nomazston & Bacorazton | 22] O

output_| @loue. 7.7

T)
o o 4 1450 JRSTRP—, T [
e — ot

ot | (None, 25. 25,60

(a) Small Depth Network

it | (Nowe, 7.7, 39

one, 23,25, 64)
None. .25, 1)

p_sampling2d_1: UpSanplinzzn

output | ®one, 14 14,3

o 35,28,

0

o [2210 |

(b) Medium Depth Net-
work

put._| one, 14, 14, 16)
bt ozt Baicnuazaion |

e, 13, 14.16)

aput. | (None, 14, 14,10

Upsanplngzp [
output| ®None, 2526, 16)

ot | (None. 25, 25.5)
output. | (one, 26,28, 9)

o
oo 30359

Wone 26,20, 1)

.

(c) Large Depth Network

Figure 12: Generator architectures.

Appendix C. Images Generated with Different Generator Depths

7 (o,
GEHR 9 7
7| " 4
BENRELR B SR RORORD
HEGH g a B
H E 2 & SRR
(b) Medium Depth Net-
(a) Small Depth Network work (c) Large Depth Network

Figure 13: Generated images.

Appendix D. Images Generated at Different Epochs

28
9o
<%
s
{3
| &
| 0

S~ N O M

Figure 17: Image at 60th epoch.

LG RYESRY £
T7vrOs ~

NIy
ONN&EY D

e Q ~Q

Figure 18: Image at 80th epoch.

_7?02.,56{.

Figure 19: Image at 100th epoch.

10

Appendix E. Images Generated at Different Epochs while Training the Generator Twice per Iter-
ation

B EHAEHE
BEHOAAR
AoaEnn
HEHEHH

had

BBEEOH

§

Figure 20: Image at 20th epoch.

BEAHOEEH
OR-NONOR ||
B ElEkAO
RPAAAX
OEEEBEO

Figure 21: Image at 30th epoch.

Figure 22: Image at 40th epoch.

<]¥]=- e
o]o]s o
S

rla]s]o
EENE

o

nnoidAae

Figure 23: Image at 50th epoch.

11

Appendix F. CGAN images from different architectures

Digit: 0 Digit: 1 Digit: 2 Digit: 3 Digit: 4

0]1].213]7

Digit: 5 Digit: 6 Digit: 7 Digit: 8 Digit: 9

HAVEA

(a) Small Depth Network

Digit0 Digi:l Digit2 Digi:3 Digitd
Digt:s D9

(b) Medium Depth Net-
work

Figure 24: Generated images.

12

Digit: 0 Digit: 1 Digit: 2 Digit: 3 Digit: 4

EEARAR

Digit: 5 Digit: 6 Digit: 7 Digit: 8 Digit: 9

o

A EARA

(c) Large Depth Network

