
Coursework Group 18

Imperial College London

Department of Electrical and Electronic Engineering

Mathematics II: Numerical Analysis

Authors
Erk Bayar (01060692), Henry Eshbaugh (01075992), Koral Hassan (01096803),
Paul Streli (01103106), Chengdong Sun (01115007)

Date: March 15, 2017

Contents

1. Exercise 1: RL circuit 6
1.1. The RL circuit . 6
1.2. Implementation of second-order Runge-Kutta methods 7
1.3. Analytical solution . 9

1.3.1. Step signal with amplitude Vin = 5.5V 10
1.3.2. Impulse signal and decay . 11
1.3.3. Sine wave input . 14
1.3.4. Square wave input . 17
1.3.5. Sawtooth wave input . 18

2. Exercise 2: Error analysis 20
2.1. Exact solution of the ODE . 20
2.2. Error analysis . 21

3. Exercise 3: RLC circuit 26
3.1. RK4 . 26
3.2. RLC circuit . 28
3.3. Output voltage for different input signals 31

3.3.1. Analytical solution . 31
3.3.2. Step Signal . 32
3.3.3. Impulsive signal with decay . 36
3.3.4. Square Waves with different frequencies 39
3.3.5. Sine Waves with different frequencies 42

4. Exercise 4: Diffusion of heat along a wire 45
4.1. The heat equation, and obtaining a calculable expression 45
4.2. Implementation of the finite-differences method 45
4.3. Solutions for various initial conditions 50

4.3.1. The triangular pulse . 51
4.3.2. A single period of a sinusoid . 52
4.3.3. The absolute value of one period of a sinusoid 53
4.3.4. The sinc function . 53
4.3.5. The potential well . 54

References 56

A. Full code listing for the RL circuit 57
A.1. heuns.m . 57
A.2. midpoint.m . 57
A.3. ralston.m . 58
A.4. heuns script.m . 58
A.5. midpoint script.m . 63
A.6. ralston script.m . 68
A.7. error script.m . 73

B. Full Code listing for RLC-circuit (Exercise3) 76
B.1. RK4second.m . 76

2

B.2. RLC script.m . 76

C. Full code listing for the finite differences method 78
C.1. finite script.m . 78

3

List of Figures

1. RL-Circuit . 6
2. Vin = 5.5 . 10
3. Vout against time when Vin = 5.5V . 10
4. Analytically obtained output voltage when Vin = 5.5V 11

5. Vin = 3.5e
− t2

160(µ)2 . 12

6. Vout against time when Vin = 3.5e
− t2

160(µ)2 12

7. Vin = 3.5e
− t

160µ . 13

8. Vout against time when Vin = 3.5e
− t

160µ 13

9. Analytically obtained output voltage when Vin = 3.5e
− t

160µ 14
10. Vin = 4.5sin(2πt

20µ) . 14

11. Heun’s method Vin = 4.5sin(2πt
T) . 15

12. Midpoint method Vin = 4.5sin(2πt
T) . 15

13. Heun’s method Vin = 4.5sin(2πt
T) . 15

14. Vin = 4.5square(2πt
20µ) . 17

15. Heun’s method Vin = 4.5square(2πt
T) . 17

16. Midpoint method Vin = 4.5square(2πt
T) 17

17. Ralston’s method Vin = 4.5square(2πt
T) 18

18. Vin = 4.5 sawtooth
(

2πt
20µ

)
. 18

19. Heun’s method Vin = 4.5 sawtooth(2πt
T) 19

20. Midpoint method Vin = 4.5 sawtooth(2πt
T) 19

21. Heun’s method Vin = 4.5 sawtooth(2πt
T) 19

22. Vout against time, Vin = 6cos(2π
150µ t) . 22

23. Vout against time, Vin = 6cos(2π
150µ t) . 22

24. Vout against time, Vin = 6cos(2π
150µ t) . 22

25. Heun’s method error against time . 23
26. Midpoint method error against time . 24
27. Ralston’s method error against time . 24
28. Heun’s method log maxerror against log h 24
29. Midpoint method log maxerror against log h 24
30. Ralston’s method log(maxerror) against log h 25
31. Butcher tableau for Runge-Kutta 3/8 [6] 27
32. RLC-Circuit . 28
33. Step Signal with amplitude 5 V . 33
34. Response of capacitor charge for input step signal 33
35. Output voltage for input step signal . 34
36. Analytically obtained output voltage for input step signal 35
37. Impulsive signal with decay . 36
38. Capacitor charge for input impulsive signal with decay 37
39. Output voltage for input impulsive signal with decay 38
40. Unit Impulse Response of the RLC-circuit 39
41. Frequency Response of the RLC-Circuit 40
42. RLC-Circuit response to square wave of f = 5 Hz 40
43. RLC-Circuit response to square wave of f = 110 Hz 41
44. RLC-Circuit response to square wave of f = 500 Hz 42

4

45. RLC-Circuit response to sine wave of f = 5 Hz 43
46. RLC-Circuit response to sine wave of f = 110 Hz 43
47. RLC-Circuit response to sine wave of f = 500 Hz 44
48. Heat of a wire for time-varying boundary conditions. The initial condition

is a triangular pulse; boundary conditions are computed along a single
period of a sine wave. 48

49. Heat distribution along the wire through time. 48
50. Heat distribution along the wire for unbalanced time-varying boundary

conditions. 49
51. A view of the mesh shown in Figure reffig:unbalancedboundaryoverhead,

displayed from the side. 50
52. Heat distribution along the length of the wire for initial conditions given

by Equation (23a). 51
53. Heat in the wire. The initial condition is a triangular pulse. 51
54. Heat distribution along the length of the wire for initial conditions given

by Equation (23b). 52
55. Plots for Equation (23b). 52
56. Heat distribution along the length of the wire for initial conditions given

by Equation (23c). 53
57. Heat distribution over a wire for initial conditions given by Equation (23e). 53
58. Heat distribution along the length of the wire for initial conditions given

by Equation (23d). 54
59. Another view of (a). 54
60. Heat distribution along the length of the wire for initial conditions given

by Equation (23d). 55
61. Mesh plots of Equation (23e). 55

5

1. Exercise 1: RL circuit

1.1. The RL circuit

The RL circuit is made up of a resistor connected in series with an inductor; therefore
the resistor and inductor share the same current iL(t). The circuit shown in Figure 1
is a high pass filter, which are usually built using capacitors as they are more easily
manufactured and deviate less from their ideal component models.

Figure 1: RL-Circuit

The RL circuit of interest can be described by the following equation:

VL(t) + VR(t) = Vin(t)

L
d

dt
iL(t) +RiL(t) = Vin(t) (1)

d

dt
iL(t) =

Vin(t)−RiL(t)

L
(2)

The state of the circuit is described by the inductor current iL(t), and the input voltage
Vin(t).

The output voltage Vout of the circuit is the voltage across the inductor L, which could
be obtained by:

Vout = Vin(t)−RiL(t) (3)

The values of the components are given as:

R = 0.5Ω L = 1.5 mH

There is an initial condition stating that the current through the inductor at time t = 0
is iL(0) = 0. This implies that there is no voltage across the resistor at t = 0.

6

1.2. Implementation of second-order Runge-Kutta methods

Referring to the notation used in the Mathematics II course, heuns.m (Appendix A.1),
midpoint.m (Appendix A.2), and ralston.m (Appendix A.3) are MATLAB functions
that calculate yi+1, xi+1 and ti+1 for previously-computed values yi, xi and ti, hence
yielding an approximate numerical solution to an ordinary differential equation. Heun’s
method, the midpoint method, and Ralston’s method are all second order Runge-Kutta
methods, with different scaling factors.

yi+1 = yi + hφ(xi, yi, h)

k1 = f(xi, yi)

k2 = f(xi + p1h, yi + q11k1h)

φ = ak1 + bk2

The second-order Runge-Kutta method is implemented with the following code.

1 func = @(t,iL) (feval(Vin,t) - R*iL)/L; % LiL'=Vin-R*iL -> iL'=f(t,iL)
2

3 N=round((tf-ti)/h); % number of steps=(interval size)/(step size)
4 % set up arrays
5 t = zeros(1,N);
6 iL=zeros(1,N);
7 Vout=zeros(1,N); %set up arrays
8 Vout(1) = feval(Vin,ti);% calculate initial value of Vout
9 t(1)=ti;

10 iL(1)=iL0;%set initial values of t 0, and iL at t 0

The script starts by defining a function for evaluating d
dt iL(t) as given in Equation (1),

then calculates the number of steps N . Three empty arrays of length N are created to
store t, iL and Vout.

1 for j=1:N-1 % loop for N steps
2 ttemp = t(j);
3 iLtemp = iL(j); %temporary names
4 grad1 = feval(func, ttemp,iLtemp); % gradient at t, iL
5 iLp = iLtemp + q11*h*grad1; % calculate iL predictor
6 grad2 = feval(func, ttemp+p1*h,iLp); % gradient at t+p1*h, iL+q11k1h
7 iL(j+1) = iLtemp + h*(a*grad1 + b*grad2); % next value of iL ...

calculated from previous values of t,iL
8 t(j+1) = ttemp+h; % increase t by stepsize
9 Vout(j+1) = feval(Vin,t(j+1))-R*iL(j+1);%calculate Vout

10 end

For each segment of step-size h, the method firstly evaluates the gradient at (xi, yi), k1,
which is then fed into the calculation of k2, evaluated at different amount of increments
given by x + p1h and y + q11k1h. After k1 and k2 have been calculated, the increment
is computed and the next value of y is calculated from previous values of x and y, using
different scaling factors a and b, which depend on the method employed. Vout is then
calculated using Equation (2) and stored in the Vout array. This is repeated N times in
order to estimate the solution for an ordinary differential equation.

7

Vin, iL0, h,R, L, ti, and tf are passed to heuns.m, midpoint.m, and ralston.m, where
t and iL are the xi and yi (in the sense that the solution of the ODE maps time to
voltage), h is the step-size, ti and tf are the starting time and final time, R is the value
of the resistor, and L is the value of the inductor.

The above code is used in common for all heuns.m, midpoint.m, and ralston.m,
with a change of scaling factors p1, q11, a, b.

From the Mathematics II course notes, the scaling factors a, b, p1, and q11 are chosen
so that they agree with the following equations obtained from Taylor series:

a+ b = 1

bp1 =
1

2

bq11 =
1

2

For Heun’s method,

a =
1

2
, b =

1

2
, p1 = 1, q11 = 1

For the Midpoint method,

a = 0, b = 1, p1 =
1

2
, q11 =

1

2

For Ralston’s method [4],

a =
1

3
, b =

2

3
, p1 =

3

4
, q11 =

3

4

Heuns script.m (Appendix A.4), Midpoint script.m (Appendix A.5), Ralstons script.m
(Appendix A.6) are constructed as follows:

1 %set up initial conditions
2 iL0=0;
3 ti=0;
4

5 %define component values
6 R=0.5;
7 L=0.0015;
8

9 Vina = 5.5;
10 Vin=@(t) Vina*exp(0); %define input signal as function of time
11 figure
12 Vout = feval(Vin,ti)-R*iL0;
13 subplot(3,4,nn);
14 plot(ti,Vout); % plot initial condition

The code starts with defining the initial conditions, defining the component values, and
defining input voltage. Then plots the initial condition.

8

1 h=10e-7; % set step-size
2 tf=0.04; % set final value of t
3 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
4 plot(t,Vout); % plot Vout against t
5 title('Heuns Vin=5.5V')
6 xlabel('Time [t]') % x-axis label
7 ylabel('Vout [V]') % y-axis label

Next, the step size and final value of t is chosen. The parameters are passed to scripts
implementing each method, which in turn return output voltage and time arrays. Then
calls heuns.m/midpoint.m/ralston.m depends on what method to use and they return
arrays of output voltage and time. Finally it plots output voltage against time.

The code above only shows Heun’s method with the step signal input as an example. The
MATLAB code for the other methods can be found in Appendix (Appendix A.2, A.3).
It will plot the output voltage obtained using heuns.m, midpoint.m, or ralston.m
against time for a stated step-size and interval size.

1.3. Analytical solution

The RL-circuit can be solved analytically. This can be done using the Laplace trans-
form.

Starting from the second order differential equation describing the RL-circuit:

L
d

dt
iL(t) +RiL(t) = Vin(t)

The Laplace transform is applied:

L(iL(s)− iL(0)) +RiL(s) = Vin(s)

With algebraic manipulation, an expression for iL(s) can be found:

iL(s) =
Vin(s) + LiL(0)

Ls+R
(4)

Since Vout = Vin(t)−RiL(t),

Vout(s) =
Vin(s)−R(Vin(s) + LiL(0))

Ls+R
(5)

In the following sections, the inverse Laplace transforms of the preceding two equations
will be obtained for particular component values.

9

1.3.1. Step signal with amplitude Vin = 5.5V

The first input is a step signal with amplitude Vin = 5.5V . Because the observed time
interval does not include the negative time axis, the step signal looks like a DC voltage
with amplitude 5.5V. These conditions are implemented by the following MATLAB
code.

1 Vina = 5.5;
2 Vin=@(t) Vina*exp(0); %define input signal as function of time

Figure 2: Vin = 5.5

The input jumps up to 5.5V at t = 0 instantaneously and remains at this level for all
positive t.

Since the inductor will act as a short circuit for DC-voltages, eventually all the voltage
will be dropped across the resistor and no voltage will be dropped across the inductor.
Therefore the steady state value of Vout should be 0V.

After executing the MATLAB script, several plots are obtained.

(a) Heun’s method (b) Midpoint method (c) Ralston’s method

Figure 3: Vout against time when Vin = 5.5V

This displays the exponential characteristic of a high-pass filter step response, as ex-
pected. In order to find an analytical solution, firstly, the Laplace transform of the step
signal is obtained:

Vin(s) =
5

s

10

Then Vin(s), the initial conditions and the components values are plugged into Equation
(4). Using partial fraction decomposition, the inverse Laplace transform is found.

iL(s) =
Vin(s) + LiL(0)

Ls+R

iL(s) =
5.5

0.0015s2 + 0.5s

iL(s) =
11

x
− 11

x+ 11
x+ 1000

3

iL(t) = 11(1− e−
1000
3
t)u(t)

Vout(t) = Vin(t)−RiL(t)

Vout(t) = 5.5u(t)− 5.5(1− e−
1000
3
t)u(t)

Vout(t) = 5.5(e−
1000
3
t)u(t) (6)

When the input is a step signal the output voltage decays exponentially with time

described by the following equation. Vout = Vine
−R
L
t Vout(t) = 5.5(e−

1000
3
t) This is

Figure 4: Analytically obtained output voltage when Vin = 5.5V

because the current iL equals zero initially. The current flowing through the inductor
will increase by iL = 1

L

∫ t
t0
VL(t)dt+ iL(0). As Vout is given by Vin(t)−RiL(t), initially

Vout = Vin. Since iL gets bigger as t gets larger, Vout decays to 0.

The shape of the output voltage is almost identical between the three methods and they
all look similar to the analytically obtained solution. This indicates that heuns.m,
midpoint.m, and ralston.m are functioning correctly.

1.3.2. Impulse signal and decay

Vin = Vine
− t

2

τ with Vin = 3.5V and τ = 160(µs)2

This is implemented as the following MATLAB function:

11

1 Vina = 3.5;
2 tau = 160e-12;
3 Vin=@(t) Vina*exp(-tˆ2/tau);

Figure 5: Vin = 3.5e
− t2

160(µ)2

At t = 0, the input jumps to 3.5V and quickly decays to the steady state value 0V.
Initially, there is no current flowing in the circuit and no voltage is dropped across the
resistor. All the input voltage is dropped across the inductor. Eventually, the input
voltage value approaches 0V and the change in the input signal will decay. Thus, the
inductor will act like a short circuit and the output voltage will reach 0V.

(a) Heun’s method (b) Midpoint method (c) Ralston’s method

Figure 6: Vout against time when Vin = 3.5e
− t2

160(µ)2

The output voltage in Figure 24 dropped to a very slightly negative value and subse-
quently approaches 0V.

Vin = Vine− t
τ with Vin = 3.5V and τ = 160µs

This is implemented in the following MATLAB:

1 Vina = 3.5;
2 tau = 160e-6;
3 Vin=@(t) Vina*exp(-t/tau);

12

Figure 7: Vin = 3.5e
− t

160µ

(a) Heun’s method (b) Midpoint method (c) Ralston’s method

Figure 8: Vout against time when Vin = 3.5e
− t

160µ

In order to find an analytical solution, first, the Laplace transform of the step signal is
obtained:

Vin(t) = 3.5e
− t

160µ

Vin(s) =
3.5

s+ 1
160µ

Then Vin(s), the initial conditions and the components values are plugged into Equa-
tion(4). Using partial fraction decomposition, we find the inverse Laplace transform.

iL(s) =
Vin(s) + LiL(0)

Ls+R

iL(s) =
3.5

0.0015s2 + 79
8 s+ 3125

iL(s) =
0.394366

x+ 100
3

− 0.394366

x+ 6250

iL(t) = 0.394366(e−
100
3
t − e−

1
160µ

t
)

Vout(t) = Vin(t)−RiL(t)

Vout(t) = 3.697183e
− 1

160µ
t − 0.197183e−

100
3
t (7)

13

Figure 9: Analytically obtained output voltage when Vin = 3.5e
− t

160µ

The analytically-obtained output in Figure 9 has a similar shape as the results obtained
from the numerical methods shown in Figure 8.

1.3.3. Sine wave input

The sine wave input is implemented with the following code. The code and input graph
are only shown for sinusoidal input with amplitude 4.5 and period 20µs.

1 Vina = 4.5;
2 T= 20e-6;
3 Vin=@(t) Vina*sin(2*pi*t/T);

The value of T is changed to give sinusoids with different periods.

Figure 10: Vin = 4.5sin(2πt
20µ)

14

Figure 11: Heun’s method Vin = 4.5sin(2πt
T)

Figure 12: Midpoint method Vin = 4.5sin(2πt
T)

Figure 13: Heun’s method Vin = 4.5sin(2πt
T)

As expected, the input signal shows a sine wave with amplitude 4.5 V and a period of
20µs.

The steady state response of the output sine wave is expected to be shaped by the
transfer function.

H(jω) =
Vout
Vin

H(jω) =
jωL

R+ jωL
(8)

For sine wave input with amplitude 4.5V and period 20µs, H(j 2π
20µ) is evaluated with

the corresponding component values. Then, the gain and the phase-shift of the transfer
function are obtained:

H(j
2π

20µ
) =

j(2π
20×10−6)1.5× 10−3

0.5 + j(2π
20×10−6)(1.5× 10−3)

= 1.0 + 0.00106i

15

|H(j
2π

20µ
)| = 1.000

∠H(j
2π

20µ
) = 0.0608◦

For output voltage, we expect a sine wave with V = 4.5× 1 = 4.5V and with a positive
phase shift of 0.0608◦.

Next, a sine wave input with amplitude 4.5V and period 160µs:

H(j
2π

160µ
) = 1.0 + 0.00849i

|H(j
2π

160µ
)| = 1.000

∠H(j
2π

160µ
) = 0.486◦

For output voltage, we expect a sine wave with V = 4.5× 1 = 4.5V and with a positive
phase shift of 0.486◦.

Following the same method, a sine wave input with amplitude 4.5V and period 450µs:

H(j
2π

450µ
) = 0.999 + 0.0239i

|H(j
2π

450µ
)| = 0.9997

∠H(j
2π

450µ
) = 1.368◦

For output voltage, expect a sine wave with V = 4.5 × 0.9997 = 4.499V and with a
positive phase shift of 0.486◦.

For sine wave input with amplitude 4.5V and period 1000µs:

H(j
2π

1000µ
) = 0.997 + 0.0529i

|H(j
2π

1000µ
)| = 0.9986

∠H(j
2π

1000µ
) = 3.037◦

For output voltage, we expect a sine wave with V = 4.5 × 0.9986 = 4.49V and with a
positive phase shift of 3.037◦.

These results could be observed in Figures 11, 12 and 13. The decrease in amplitude
and phase lag are sufficiently small that the output voltage is essentially equal to the
input voltage.

16

1.3.4. Square wave input

The square wave input is implemented with the following code:

1 Vina = 4.5;
2 T= 20e-6;
3 Vin=@(t) Vina*square(2*pi*t/T);

The value of T is changed to yield square waves with different periods.

Figure 14: Vin = 4.5square(2πt
20µ)

The output voltage against time graph is plotted:

Figure 15: Heun’s method Vin = 4.5square(2πt
T)

Figure 16: Midpoint method Vin = 4.5square(2πt
T)

17

Figure 17: Ralston’s method Vin = 4.5square(2πt
T)

When a small-period square wave is the input, the output looks identical to the input
waveform. However, as the period of the square wave increases, the output changes shape
and the slope becomes non-zero. This is because for a step input, the output decays to
zero exponentially, but since the period of the input is very small, the gradient appears
linear. As the period increases, Vout has more time to decrease and the change becomes
better observable. Hence, there appears to be a greater gradient for lower frequencies.

The time constant is given by τ = L
R = 30ms for this RL-circuit. For a small period like

20µs, the period is much smaller than the time constant, so the gradient is essentially
vanishing. At higher periods like 1000µs, the value is much closer to the time constant,
and so the exponential decay is more readily observed.

1.3.5. Sawtooth wave input

The sawtooth wave input is implemented with the following code:

1 Vina = 4.5;
2 T= 20e-6;
3 Vin=@(t) Vina*sawtooth(2*pi*t/T);

The value of T is changed to simulate square waves with different periods.

Figure 18: Vin = 4.5 sawtooth
(

2πt
20µ

)

18

Figure 19: Heun’s method Vin = 4.5 sawtooth(2πt
T)

Figure 20: Midpoint method Vin = 4.5 sawtooth(2πt
T)

Figure 21: Heun’s method Vin = 4.5 sawtooth(2πt
T)

When a sawtooth wave with very small period (compared to τ) is fed into the circuit,
the output looks identical to the input waveform. For sawtooth wave inputs with longer
periods, the output starts to slightly curve. This happens as the period of the input
becomes comparable the time constant of the circuit, resulting in the circuit trying to
restore its “natural state” of VL = 0.

19

2. Exercise 2: Error analysis

Vin = Vincos(
2π

T
t)

Where Vin = 6V , T = 150µs

2.1. Exact solution of the ODE

In order to calculate the exact solution of the ODE, start with the ODE that describes
RL-circuit.

L
d

dt
iL(t) +RiL(t) = Vin(t)

d

dt
iL(t) +

R

L
iL(t) =

1

L
Vin(t)

µ(t) = e
∫
R
L
dt = e

R
L
t

e
R
L
t d

dt
iL(t) + e

R
L t
R

L
iL(t) =

1

L
e
R
L
tVin(t)

d

dt
(e

R
L
tiL(t)) =

1

L
e
R
L
tVin(t)

=
1

L
e
R
L
tAcos(

2π

T
t)

e
R
L
tiL(t) =

∫
1

L
e
R
L
tAcos(

2π

T
t)dt+ c

iL(t) = e−
R
L
t(

1

L
A

∫
e
R
L
tcos(

2π

T
t)dt+ c) (9)

Calculate
∫
e
R
L
tcos(2π

T t)dt using integration by parts.∫
e
R
L
tcos(

2π

T
t)dt = e

R
L
t T

2π
sin(

2π

T
t)− RT

2πL

∫
e
R
L
tsin(

2π

T
t)dt

Calculate
∫
e
R
L
tsin(2π

T t)dt using integration by parts.∫
e
R
L
tsin(

2π

T
t)dt = −e

R
L
t T

2π
cos(

2π

T
t) +

RT

2πL

∫
e
R
L
tcos(

2π

T
t)dt

Plug the expression for
∫
e
R
L
tsin(2π

T t)dt in the
∫
e
R
L
tcos(2π

T t)dt and rearrange.

∫
e
R
L
tcos(

2π

T
t)dt = e

R
L
t T

2π
sin(

2π

T
t)dt+

RT

2πL
e
R
L
t T

2π
cos(

2π

T
t)− R2T 2

4π2L2

∫
e
R
L
tcos(

2π

T
t)dt

∫
e
R
L
tcos(

2π

T
t)dt =

4π2L2(e
R
L
t T

2πsin(2π
T t)dt+ RT 2

4π2L
e
R
L
tcos(2π

T t))

4π2L2 +R2T 2

20

=
2πTL2e

R
L
tsin(2π

T t)dt+ LRT 2cos(2π
T t)

4π2L2 +R2T 2

Then plug back to the iL Equation (9),

iL(t) = e−
R
L
t(

1

L
A

∫
e
R
L
tcos(

2π

T
t)dt+ c)

=
2AπTLsin(2π

T t) +ART 2cos(2π
T t)

4π2L2 +R2T 2
+ ce−

R
L
t

Finally calculate c from the initial condition given.

iL(0) =
ART 2cos(2π

T t)

4π2L2 +R2T 2
+ c = 0

c = − ART 2

4π2L2 +R2T 2

iL(t) =
2AπTLsin(2π

T t) +ART 2cos(2π
T t)

4π2L2 +R2T 2
− ART 2

4π2L2 +R2T 2
e−

R
L
t (10)

2.2. Error analysis

error script.m(Appendix ??) starts by defining the initial conditions, and constant
values.

1 iL0=0; % set initial values
2 ti=0;
3 R=0.5; % set constant values
4 L=0.0015;
5 A=6;
6 Vina = 6;
7 T= 150e-6;
8 Vin=@(t) Vina*cos(2*pi*t/T); % set Vin

Next, plot the output voltage using the second-order Runge-Kutta methods.

1 tf=0.0003; % set final value of t
2 h=10e-7; % set step-size
3 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf);
4 figure
5 subplot(3,2,1);
6 plot(t,Vout); % plot heuns Vout against t
7 title('Heuns Vin=6cos(2*pi*t/150e-6)')
8 xlabel('Time [s]') % x-axis label
9 ylabel('Vout [V]') % y-axis label

Then plot the exact solution that has been calculated previously in Equation (10).

21

1 iL exact=((2*A*pi*T*L*sin((2*pi*t)/T)+A*R*Tˆ2*cos((2*pi*t)/T))
2 /(4*piˆ2*Lˆ2+Rˆ2*Tˆ2))-(c*exp(-R*t/L)); %calculate exact solution
3 Vout exact=feval(Vin,t)-R*iL exact; % calculate Vout for exact iL
4 subplot(3,2,2);
5 plot(t,Vout exact); %plot exact solution
6 title('Exact solution of the ODE')
7 xlabel('Time [s]') % x-axis label
8 ylabel('Vout [V]') % y-axis label
9 error=abs(Vout exact-Vout); % calculate maximum error over range of x

10 subplot(3,2,[3,4]);
11 plot(t,error); % plot error against t
12 title('Error against time')
13 xlabel('Time [s]') % x-axis label
14 ylabel('Error [V]') % y-axis label

A step size of h = 10−7 was used.

(a) Heun’s method (b) Exact solution

Figure 22: Vout against time, Vin = 6cos(2π
150µ t)

(a) Midpoint method (b) Exact solution

Figure 23: Vout against time, Vin = 6cos(2π
150µ t)

(a) Ralston’s method (b) Exact solution

Figure 24: Vout against time, Vin = 6cos(2π
150µ t)

Comparing the shapes of the graphs obtained from the three methods and the exact
ODE solution, we find that they have the same shape, which proves that the three
methods are functioning correctly and predicting the solution of the ODE.

22

1 c=((A*R*Tˆ2)/(4*piˆ2*Lˆ2+Rˆ2*Tˆ2)); %c for exact solution
2 subplot(3,2,[5,6]);
3 h = zeros(1,10); %initialize arrays
4 errororder = zeros(1,10);
5 count = 1; %initialize count
6

7 hi=1e-9;hh=1e-9;hf=1e-7; % set initial step-size, ...
increment in step-size and final step-size value

8 h=hi:hh:hf;
9 Nh=round((hf-hi)/hh)+1; % number of steps=(interval size ...

of step-size)/(increment in step-size)

The MATLAB code is implemented as follows: Initialize arrays for h and “errororder”,
then initialize a counter variable. Set the initial step-size, increment in step-size and
final step-size value, then calculate the number of steps.

1 for count=1:Nh
2 [t,Vout]=heuns(Vin,iL0,h(count),R,L,ti,tf);% call heuns.m
3 iL exact=((2*A*pi*T*L*sin((2*pi*t)/T)+A*R*Tˆ2*cos((2*pi*t)/T))
4 /(4*piˆ2*Lˆ2+Rˆ2*Tˆ2))-(c*exp(-R*t/L)); %calculate exact solution
5 Vout exact=feval(Vin,t)-R*iL exact; % calculate exact solution ...

as array
6 errororder(count)=max(abs(Vout exact-Vout)); % calculate ...

maximum error over range of x
7 hold on;
8 end
9 hold off;

10 plot(log(h),log(errororder)); % plot log log graph
11 gradheuns=polyfit(log(h), log(errororder),1); % calculate gradient
12

13 title('log of maximum error against log of h')
14 ylabel('log error max') % x-axis label
15 xlabel('log h') % y-axis label

Iterate from 1 to the number of steps calculated and obtain the arrays of Vout for each
value of h. The code calculates the maximum error by subtracting the Vout-array from
the exact Vout-array, calculated previously in Equation (10). Eventually, it finds the
maximum absolute value of the array, which is equal to the maximum error. Then it
plots the maximum error as a point on the graph and repeats the same process for all
step-sizes h. Finally, a log-log graph is plotted and the gradient of the log-log graph is
obtained.

Figure 25: Heun’s method error against time

23

Figure 26: Midpoint method error against time

Figure 27: Ralston’s method error against time

Comparing the amplitude of the error, we find that Heun’s method has a magnitude of
7×10−6, the midpoint method has a magnitude of 3.4×10−6 and Ralston’s method has
a magnitude of 1.8 × 10−6. Thus, Ralston’s method has the smallest error amplitude
at step size h = 10−7, indicating that Ralston’s method gives the smallest truncation
error.

Figure 28: Heun’s method log maxerror against log h

Figure 29: Midpoint method log maxerror against log h

24

Figure 30: Ralston’s method log(maxerror) against log h

The log-log plot shows that by using a smaller step size, the maximum size of error
also decreases. The gradient of the line was 1.9976 for Heun’s method, 1.9900 for the
Midpoint method, and 1.9934 for Ralston’s method. Because the plot is of the order of
maximum error against the order of step-size, the gradient of 2 means that all three 2nd
order Runge-Kutta methods have an error of order O(h2).

25

3. Exercise 3: RLC circuit

3.1. RK4

Referring to the notation used in the Mathematics II course, RK4second.m is a MAT-
LAB function that calculates yi+1, xi+1 and ti+1 for a given yi, xi and ti, using the
Runge-Kutta 3/8 algorithm. This means that the algorithm is used to approximate the
values of a function x and its derivative y as we increase its independent variable t by
a small step h. This is possible as the relationship between x, y and the argument t is
known in form of a second order differential equation.

h, ti, xi, yi, and two arbitrary functions are passed as input arguments to RK4second.
The first function funcx states the relationship between the derivative of x (ẋ=y) at a
point ti and the values ti, xi and yi. The second function funcy states the relationship
between the derivative of y at a point ti and the values ti, xi and yi.

Given this information, the MATLAB function follows the Runge-Kutta 3/8 algorithm,
which obtains the increment functions φx and φy to evaluate the change in x and y:

xi+1 = x+ h · φx;

yi+1 = y + h · φy.

The increment functions are given as follows:

φx = (k1x + 3k2x + 3k3x + k4x)/8;

φy = (k1y + 3k2y + 3k3y + k4y)/8,

where
k1x = funcx(ti, xi, yi);

k1y = funcy(ti, xi, yi);

k2x = funcx(ti +
h

3
, xi +

h

3
k1x, yi +

h

3
k1y);

k2y = funcy(ti +
h

3
, xi +

h

3
k1x, yi +

h

3
k1y);

k3x = funcx(ti +
2

3
h, xi −

1

3
hk1x + hk2x, yi −

1

3
hk1y + hk2y);

k3y = funcy(ti +
2

3
h, xi −

1

3
hk1x + hk2x, yi −

1

3
hk1y + hk2y);

k4x = funcx(ti + h, xi + hk1x − hk2x + hk3x, yi + hk1y − hk2y + hk3y);

k4y = funcy(ti + h, xi + hk1x − hk2x + hk3x, yi + hk1y − hk2y + hk3y).

The following scaling factors are used:

a =
1

8
, b =

3

8
, c =

3

8
, d =

1

8

p1 =
1

3
, p2 =

2

3
, p3 = 1

26

q11 =
1

3
, q21 = −1

3
, q22 = 1, q31 = 1, q32 = −1, q33 = 1.

These were obtained by looking at the Butcher tableau for the Runge-Kutta 3/8 algo-
rithm [2] (see Figure 31).

Figure 31: Butcher tableau for Runge-Kutta 3/8 [6]

The MATLAB function starts by calculating the values of k1. As the higher-order
coefficients are evaluated at 1

3h increments of t1, the values of x and y at these points
rely on predictions that use the previous obtained coefficients. Therefore, the order of
the evaluation of the coefficients is important. After all k-values have been calculated,
the increment functions are computed, which are eventually used to find xi+1 and yi+1.

When the function terminates, RK4second returns xi+1 and yi+1 (xn and yn).

RK4second.m is implemented with the following MATLAB code:

1 function [xn, yn] = RK4second(funcx, funcy, h, ti, xi, yi)
2 %RK4second computes y(i+1) and x(i+1) using the Runge-Kutta 3/8 algorithm
3 % xn refers to x(i+1) and yn refers to y(i+1)
4 % funcx computes the derivative of x (dx/dt) at a point (ti, xi, yi)
5 % funcy computes the derivative of y (dy/dt) at a point (ti, xi ,yi)
6

7 %calculate coefficients (predicted gradients) at ti, ti+h/3, ti+2h/3, ti+h
8 %using Runge-Kutta 3/8
9 k1x = feval(funcx, ti, xi, yi);

10 k1y = feval(funcy, ti, xi, yi);
11 k2x = feval(funcx, ti + h/3, xi + h/3*k1x, yi + h/3*k1y);
12 k2y = feval(funcy, ti + h/3, xi + h/3*k1x, yi + h/3*k1y);
13 k3x = feval(funcx, ti + 2*h/3, xi - h/3*k1x+h*k2x, yi - h/3*k1y+h*k2y);
14 k3y = feval(funcy, ti + 2*h/3, xi - h/3*k1x+h*k2x, yi - h/3*k1y+h*k2y);
15 k4x = feval(funcx, ti+h, xi+h*k1x-h*k2x+h*k3x, yi+h*k1y-h*k2y+h*k3y);
16 k4y = feval(funcy, ti+h, xi+h*k1x-h*k2x+h*k3x, yi+h*k1y-h*k2y+h*k3y);
17

18 %obtain phix and phiy by taking weighted average of obtained gradients
19 phix = (k1x + 3*k2x + 3*k3x + k4x)/8;
20 phiy = (k1y + 3*k2y + 3*k3y + k4y)/8;
21

22 %use phi-values as approximated gradients for x and y
23 xn = xi + h*phix; %calculate x(i+1)
24 yn = yi + h*phiy; %calculate y(i+1)
25 end

27

3.2. RLC circuit

The RLC Circuit script finds the solution to a second order differential equation repre-
senting an RLC-circuit. RLC-circuits have the ability to resonate with a sinusoidal input
signal and are sometimes used as band-pass filters. As all components are connected in
series, they carry the same current i(t).

The RLC circuit of interest (see Figure 32) can be described by the following equation:

vL(t) + vR(t) + vC(t) = Vin(t)

L
d

dt
iL(t) +R iL(t) +

1

C

∫ t

0
iL(t) dt = Vin(t)

L
d2

dt2
qC(t) +R

d

dt
qC(t) +

1

C
qC(t) = Vin(t) (11)

The state of the circuit is described by charge on the capacitor qC , which is a function
of time and depends on the input voltage Vin(t).

Figure 32: RLC-Circuit

The output of the circuit is the voltage across the resistor R (Vout) which is proportional
to the derivative of qC(t):

Vout = R iR = R iC = R
d

dt
qC(t) (12)

The values of the components are given as:

R = 280 Ω, C = 4 µF, L = 600 mH

Moreover, there are initial conditions stating that the capacitor is initially charged with
qC(0) = 500 nC and that there is no current running through the resistor at t = 0
(iL(0) = d

dtqC(0) = 0 A). Thus, there is also no voltage across the resistor.

The MATLAB function RLC script.m starts by setting up the initial conditions, the
component values, and the step-size as well as the time interval, in which the function
is going to be evaluated. The step-size h will define the size of the error. A smaller h
will lead to more calculation steps, and thus a longer simulation time, but will yield a
result with a smaller error.

28

1 %The RLC script calculates the voltage across R (Vout) for a given ...
input signal(Vin)

2 %The RLC Circuit script is finding the solution to a second order ...
differential equation representing an RLC-circuit

3

4 %set up initial conditions
5 q0 = 500*10ˆ(-9); %[C]; capacitor charge at t=0
6 i0 = 0; %current at t=0
7 t0 = 0; %set up starting time
8 h = 0.000001; %[s]; set up step-size for Runge-Kutta 3/8
9 tf = 0.06; %[s]; define endpoint of time-interval

10

11 %define component values
12 R = 280; %resistance equals 280 Ohm
13 C = 4*10ˆ(-6); %Capacitor value is 4 microFarad
14 L=600*10ˆ(-3); %Inductance is 600 milliHenry

In the next step, the second order differential equation will be expressed as a system of
two coupled first-order equations. As the current through a capacitor is defined as the
derivative of its charge, the variable iL(t) (= d

dtqC(t)) is introduced and will be used

instead of d
dtqC(t).

The state of the RLC-circuit can be described by a second-order differential equation:

L
d2

dt2
qC(t) +R

d

dt
qC(t) +

1

C
qC(t) = Vin(t)

This equation is expressed as two coupled first-order equations:

L
d

dt
iL(t) +RiL(t) +

1

C
qC(t) = Vin(t) (13)

iL(t) =
d

dt
qC(t) (14)

The MATLAB function funcq calculates the derivative of qC(t) (see Equation (14)).
Even though q̇C(t) is equal to i(t), the function funcq is expressed as a function of all
three variables t, q and i. This generalizes the script to cases with two coupled first-order
equations that are functions of all three variables.

funcq(t, i, q) = i

The second function funci obtains the derivative of i(t). i̇(t) is used to evaluate the
change in i as t increases. funci is a function of all three variables t, q and i and
implements Equation (13):

funci(t, i, q) = (Vin(t)−R i− 1

C
q)/L

Vin(t) is the input voltage. It is a function of t only and is created by a voltage source.
Its exact shape is defined by the input signals specified in Exercise 3.

The MATLAB code creates the three functions mentioned above.

29

1 funcvin = @(t) 5; %define input signal (step-input, tf=0.06) as ...
function of time

2

3 %the other input functions with their corresponding tf-value are stated
4 %below:
5 %funcvin = @(t) 5*exp(-tˆ2/(3*10ˆ-6)); (impulse, tf=0.06)
6 %funcvin = @(t) 5*square(2*pi*t*5); (square, f=5Hz, tf=0.5)
7 %funcvin = @(t) 5*square(2*pi*t*110); (square, f=110Hz, tf=0.05)
8 %funcvin = @(t) 5*square(2*pi*t*500); (square, f=500Hz, tf=0.03)
9 %funcvin = @(t) 5*sin(2*pi*t*5); (sine, f=5Hz, tf=0.5)

10 %funcvin = @(t) 5*sin(2*pi*t*110); (sine, f=110Hz, tf = 0.05)
11 %funcvin = @(t) 5*sin(2*pi*t*500); (sine, f=500Hz, tf = 0.035)
12

13 %set up coupled first-order equations
14 funcq = @(t, q, i) i; %gradient of q at time t (=i(t))
15 funci = @(t, q, i) (feval(funcvin, t) - R*i - 1/C * q)/L; %funci ...

calculates di/dt at time t

Then, we calculate the number of steps N needed to go from the starting point (ti) to
the end of the time interval (tf) in steps of h. As h does not necessarily divide tf − ti
without a remainder, the result of the division is rounded to obtain an integer number
of steps. This means that after N steps, the function might not be evaluated exactly at
tf . However, as h gets smaller the last evaluated point in time approaches tf .

1 N = round((tf-t0)/h); %calculate number of steps to reach tf

For the input functions specified in Exercise 3, tf was sometimes changed in order to
see all the important features of the output signal. The exact values of tf are stated in
the RLC script.m. A small value of h = 0.000001 was chosen for all input signals in
order to obtain an output signal with small error. Note that this may require significant
computing power to be at the user’s disposal.

Three empty arrays (zero valued) of length N are created to store t, q and i each. The
first entry of each array is set by its corresponding initial condition.

1 %set up arrays to store results
2 q = zeros(1,N);
3 i = zeros(1,N);
4 t = zeros(1,N);
5

6 %first element of each array is equal to corresponding initial condition
7 q(1) = q0;
8 i(1) = i0;
9 t(1) = t0;

In the next step, a for loop is used to iterate from 1 to N − 1. During each iteration
qj+1 and ij+1 at tj+1 = t + h are evaluated with the RK4second function, that uses
funcq (=̂ funcx), funci (=̂ funcy), h (=̂h), tj (=̂ t), qj (=̂x) and ij (=̂ y) as input ar-
guments. The output arguments of RK4second are stored at the right positions of the
arrays.

30

1 %use for-loop to iterate through arrays
2 %RK4second uses Runge-Kutta-3/8 algorithm to calculate next values for q
3 %and i as t is increased by h after each iteration
4 for j = 1 : N-1
5 [q(j+1),i(j+1)] = RK4second(funcq, funci, h, t(j), q(j), i(j));
6 t(j+1) = t(j) + h;
7 end

Once the for-loop has terminated we will be able to find the output voltage across the
resistor R.

Using Ohm’s Law (see Equation (12)), the output voltage is obtained:

Vout = i R

Finally, we plot the input signal, the capacitor charge, and the output voltage as a
function of time between ti and tf .

1 vout = i*R; %obtain Vout(t)(voltage across R) using Ohms Law
2 vin = arrayfun(funcvin, t); %calculate Vin(t)
3

4 figure;
5 plot(t, q); %plot q(t) as a function of t
6 title('Capacitor Charge (q {C}(t))');
7 xlabel('Time [s]');
8 ylabel('Charge [C]');
9

10 figure;
11 plot(t, vout); %plot Vout(t) as a function of t
12 title('Output Voltage (V {out}(t)=v {R}(t))');
13 xlabel('Time [s]');
14 ylabel('Voltage [V]');
15

16

17 figure;
18 plot(t, vin); %plot Vin(t) as a function of t
19 title('Input Signal (V {in}(t))');
20 xlabel('Time [s]');
21 ylabel('Voltage [V]');

RLC script.m as a whole can be found in the Appendix B.2.

3.3. Output voltage for different input signals

3.3.1. Analytical solution

The RLC-circuit can be solved analytically as well. This can be done using the Laplace
transform.

A second-order differential equation describes the state of the RLC-circuit:

L
d2

dt2
qC(t) +R

d

dt
qC(t) +

1

C
qC(t) = Vin(t)

31

The Laplace transform is applied on both sides:

L(qC(s)s2 − qC(0)s) +R(qC(s)s− qC(0)) +
1

C
qC(s) = V in(s).

By algebraic manipulation, an expression for qC(s) can be found:

qC(s) =
LCqC(0)s+RCqC(0) + CV in(s)

LCs2 +RCs+ 1
. (15)

After specifying the initial condition qC(0) and the applied input signal Vin(t), this
expression can be evaluated. Using the inverse Laplace transform, it is possible to obtain
qC(t) and its derivative iL(t), thereby determining Vout(t). V out(s) can be also found
directly from qC(s) by applying the derivative Laplace-transform rule and multiplying
by R. This yields:

V out(s) = Rs
LCqC(0)s+RCqC(0) + CV in(s)

LCs2 +RCs+ 1
−RqC(0) (16)

3.3.2. Step Signal

The first input signal is a step signal with amplitude Vin = 5 V. It is implemented in
the RLC Circuit script as a function of time.

funcvin = @(t)5; %define input signal as function of time

After executing the MATLAB script, several plots are obtained.

The first plot shows the input signal as a function of time between ti and tf (see Figure
33). As the observed time interval does not include the negative time axis, the step signal
looks like a DC-voltage with amplitude 5 V. However, in fact the input has jumped from
0 V to 5 V at t = 0 s.

32

Figure 33: Step Signal with amplitude 5 V

In the second plot, the capacitor charge qC(t) is drawn as a function of time (see Figure
34). The graph starts at qC(0) = 0.5 µC and eventually stabilises around its steady-state
value of 20 µC.

Figure 34: Response of capacitor charge for input step signal

The third plot shows the output voltage as a function of time (see Figure 35). The
output voltage is the derivative of the capacitor charge scaled by the resistor value.

33

Since a capacitor will act as an open circuit for DC-voltages, all the input voltage will
eventually drop across the capacitor and there will be no current running through the
circuit. Thus, there will be no voltage drop across the resistor. The steady-state value
of Vout is therefore 0 V. This can be easily confirmed by looking at Figure 35. The
voltage drop of 5 V across the capacitor will determine the qC(t) value of 20 µF seen in
Figure 34. This follows from the formula Q = CV .

Figure 35: Output voltage for input step signal

The initial behaviour of the transients is more difficult to explain using simple intu-
ition. In order to check that the code works as expected and that the obtained results
are correct, the analytical solution of qC(t) and Vout(t) for the input step signal were
obtained.

Firstly, the Laplace transform of the step signal is obtained:

V in(s) =
5

s

Then V in(s), the initial conditions, and the components values are plugged into Equa-
tion (15). The inverse Laplace transform is then obtained after using partial fraction
decomposition and minor rearrangement.

qC(s) =
3s2 + 1400s+ 5× 107

2× 106 s (3s2 + 1400s+ 1.25× 106)
=

=
−117s

2× 106 (3s2 + 1400s+ 1.25× 106)
− −273

104 (3s2 + 1400s+ 1.25× 106)
+

1

50000s

Finally, the inverse Laplace transform is applied to obtain qC(t).

qC(t) = 2×10−5−1.95×10−5 exp

{
−700t

3

}
cos (

100
√

326

3
t)−7.56×10−6 exp

{
−700t

3

}
sin (

100
√

326

3
t)

34

iL(t) is obtained by taking the derivative of the expression above and Vout(t) follows by
multiplying by R.

i(t) = 2.154×10−8 exp

{
−700t

3

}
cos (

100
√

326

3
t)+1.35×10−2 exp

{
−700t

3

}
sin (

100
√

326

3
t)

Vout(t) = 6.031×10−6 exp

{
−700t

3

}
cos (

100
√

326

3
t)+3.78 exp

{
−700t

3

}
sin (

100
√

326

3
t)

Plotting the analytically-obtained Vout(t) (see Figure 36), one can find the same graph
as in Figure 35. This proves that the MATLAB script and its corresponding function
RK4second.m are working correctly.

Figure 36: Analytically obtained output voltage for input step signal

Following the control lecture about system responses [3], the shape of the transient
response for qC(t) and Vout(t) are as expected. Assuming that the overshoot and rise
time of qC(t) are determined by the dominant poles of qC(s) (solution to 3s2 + 1400s+
1.25 × 106 = 0), qC(s) is found to be an underdamped system. This conclusion comes
from the fact that the two poles have a negative real part and are complex conjugates

(p1 = −700
3 + 100

√
326

3 i, p2 = −700
3 − 100

√
326

3 i). The overshoot is determined by the angle

of p1 and p2 in the complex plane α = arctan (−Re(p1)
Im(p1)) and the settling time, which is

defined to be the time to reach a 2%-tube around the steady-state value. It is given
by 4

Re(p1) . For qC(t) α is 68.808°, which yields to an overshoot of around 30% of the
steady-state value. The settling time is around 0.017s. The overshoot in Figure 34 is
close to this expected value. The actual settling time seems to be a little bit bigger
than expected. This inaccuracy is caused by the initial assumption of a system with
two complex conjugate poles only.

35

3.3.3. Impulsive signal with decay

An impulsive signal with exponential decay is applied to the RLC-circuit. The input
voltage is defined by the following equation, where V in = 5 V and τ = 3(ms)2 = 3µs:

Vin(t) = V in exp

{
− t

2

τ

}

This is implemented as the following MATLAB function:

funcvin = @(t)5*exp(-tˆ2/(3*10ˆ-6));

The graph for the input signal is a quickly-decaying second order exponential function
(see Figure 37). At t = 0, it jumps to 5 V and then approaches its steady-state value of
0 V, simulating a quick and brief change in the input conditions.

Figure 37: Impulsive signal with decay

The plot showing the capacitor charge (see Figure 38) starts from its initial position of
500 nC. As the input voltage eventually reaches 0V, there will be no voltage across the
capacitor. Thus, there is no electric field causing a charge difference between the two
capacitor plates. Therefore, after an initial ringing transient behaviour caused by the
change of the input signal, qC(t) will approach 0 C.

36

Figure 38: Capacitor charge for input impulsive signal with decay

The output voltage graph is showing ringing transient oscillation with decaying am-
plitude (see Figure 39). This damped oscillation is caused by the exchange of energy
between the inductor and the capacitor. A sudden rise in the input voltage puts a higher
voltage across the inductor, which leads to an increase in current (ddt iL(t) = vL

L). The
current builds up a magnetic field inside the inductor and increases qC and the voltage
across the capacitor. As qC rises, the capacitor stores energy in form of an electric field.
As the input voltage fades, the magnetic field of the inductor will start to decay, forcing
iL to continue to flow, while shrinking in amplitude. When iL eventually reaches 0 A,
the electric field across the capacitor will have reached its maximum. Then, the electric
field will decline, causing current to flow in the opposite direction. In return, this will
build up a magnetic field inside the inductor with reverse polarity. The amplitude of
the oscillation is declining as there is a continuos loss of energy in form of heat inside
the resistor.

The steady state value of the output voltage will be equal to 0 V. As the change in the
input signal is getting smaller and its absolute value is approaching 0 V, the oscillation
will die down and the capacitor will act as an open circuit. Eventually, there will be
no potential voltage difference causing charges to flow. Thus, there will be no current
flowing through the resistor and the output voltage will reach 0 V. The exact analytical
solution of the impulsive signal using the Laplace transform is difficult to find, as there
does not exist a closed form solution for the Laplace transform of the input function.
However, as it is a fast decaying signal with a peek at t = 0s, it can be approximated
by a Dirac delta function. Therefore, the output voltage is looking similar to the unit
impulse of the system. This is found as:

L(δ(t)) = 1

Putting this together with the initial conditions and the component values into Equation
(16), the following expression is found for V out(s):

37

V out(s) =
175× (8s− 1)

3s2 + 1400s+ 1250000

Taking the Laplace inverse, the unit impulse response is found as:

Vout(t) =
1400

3
exp

{
−700t

3

}
cos (

100
√

326

3
t)− 39221

12
√

326
sin (

100
√

326

3
t) exp

{
−700t

3

}

This can be plotted using matlab with the following command (see Figure 40):

impulse([1400 -175], [3 1400 1250000]);

Comparing the two graphs, one can find that both are varying with the corner frequency
of the transfer function of the system. This is also the corresponding frequency of the
dominant complex conjugate pole pair of the system. Moreover, they have a similar
settling time, which is defined by the real part of the complex conjugate pole pair.
However, since the Dirac delta function has an amplitude approaching infinity, the
amplitude of the unit impulse response is much bigger than that of the obtained output
signal. This high amplitude also forces the unit impulse response to immediately start
from a non-zero value.

Figure 39: Output voltage for input impulsive signal with decay

38

Figure 40: Unit Impulse Response of the RLC-circuit

3.3.4. Square Waves with different frequencies

In this subsection, the input to the RLC-circuit is a square wave with amplitude 5 V.
As the frequency of the square wave is varied, the corresponding output will take on
different shapes. A square wave can be split up into a sum of sine waves using the
Fourier series expansion (see Equation (18)). The RLC-Circuit will act as a second
order bandpass-filter and attenuate frequency components higher and lower than the

corner frequency fC =

√
1
LC

2π = 102.73Hz. While an inductor will act like a short circuit
for low frequency signals, the capacitor will have a high impedance and thus most of the
input voltage will drop across it. For high frequencies the exact opposite happens and
the voltage across the inductor increases. At fC , the two impedances cancel out and all
the voltage drops across the resistor, whose characteristics are frequency independent.
This behaviour can be described by the transfer function H(jω).

Using the potential divider rule, H(jω) is found as:

H(jω) =
R

R+ jωL+ 1
jωC

=
RCjω

LC(jω)2 +RCjω + 1
(17)

Plotting the gain and the phase against different input frequencies will confirm the
theory stated above (see Figure 41a and Figure 41b):

39

(a) Magnitude Response (b) Phase Response

Figure 41: Frequency Response of the RLC-Circuit

The Fourier series of a square wave with frequency f and amplitude 5 V has the form
of:

5× square(2πft) =
20

π

∞∑
n=1,3,5....

1

n
sin (n2πft) (18)

The first square wave used as input has a frequency of 5 Hz (see Figure 42a):

funcvin = @(t)5*square(2*pi*t*5);

In order to be able to observe all important changes in the output waveform, the endpoint
of the time interval is increased to tf = 0.5 s. For this input, the output consist of a
periodic signal with f = 5 Hz (see Figure 42b). As the period of the square wave is much
smaller than the settling time for a step input, the output looks like the sum of several
step input responses shifted in time. The time between transition is long enough in
order for the system to reach the steady state position of 0 V (DC-voltage is all dropped
across the capacitor). However, as the change in amplitude at each transition is 10 V,
the amplitude of the ringing is twice as big as in subsection 3.3.2. This is true, except
for the first ringing as the system is starting from 0 V and the first voltage step has a
magnitude of 5 V. Moreover, now there are also negative going transitions from 5 V to
−5 V, which cause a ”negative” oscillation.

(a) Input square wave with f = 5 Hz (b) Corresponding Output Waveform

Figure 42: RLC-Circuit response to square wave of f = 5 Hz

40

The second input square wave has a frequency of f = 110 Hz and an amplitude of 5 V
(see Figure 43a). tf is set to 0.05 s. As the frequency of the first harmonic (110 Hz)
is close to the corner frequency, it will be only slightly attenuated. With increasing
order, the attenuation of the system for a harmonic term gets bigger (see Figure 41a).
Thus, their contribution to the final output signal becomes more negligible. This is
why, an only slightly distorted sine wave of frequency 110 Hz can be seen as the steady
state output (see Figure 43b). The time constant of the transient behaviour and the
frequency of the transient oscillation are equal to the ones seen in subsection 3.3.2,
as these two values depend on the system itself (Laplace transform denominator). In
this case, the period of the input sine wave and its frequency are similar in size to the
transient response. Thus, there appears to be no sharp change in voltage.

(a) Input square wave with f = 110 Hz (b) Corresponding Output Waveform

Figure 43: RLC-Circuit response to square wave of f = 110 Hz

The last square wave input has a frequency of f = 500 Hz (see Figure 44a). In order to
see the whole transient response tf was set to 0.03 V. As the frequency of the square wave
is much greater than the frequency and the time constant of the transient oscillation, the
system has not much time to respond to the change. This is why, the output voltage is
sharply rising from its steady state maximum and minimum with a frequency of 500 Hz
(see Figure 44b). Before the output oscillation is able to reach its maximum after a
positive going input transition, there is already another change in the input. This leads
to a sharp peak in the output voltage and a very steep transition in order to follow the
input. Moreover, the steady state amplitude of the waveform is decreased to around
1.2 V. This was expected as all the harmonics will be attenuated by the RLC-circuit.
The initial transient oscillation frequency due to the initial conditions is smaller than
the output frequency and therefore appears like a time varying offset.

41

(a) Input square wave with f = 500 Hz (b) Corresponding Output Waveform

Figure 44: RLC-Circuit response to square wave of f = 500 Hz

3.3.5. Sine Waves with different frequencies

Three sine waves with an amplitude of 5 V and frequencies of 5 Hz, 110 Hz and 500 Hz
are applied to the circuit. The steady-state output of a sine wave to a circuit with
passive components can be analytically obtained using the transfer function (H(jω)) of
the circuit. The output will always be a sine wave with the same frequency as the input
signal. However, there might be a change in amplitude and phase.

A MATLAB expression is found for the first sine wave input with f = 5 Hz:

funcvin = @(t)5*sin(2*pi*t*5);

tf is equal to = 0.5 s.

As expected, the input signal shows a sine wave with amplitude 5 V and a period of
0.2 s (see Figure 45a).

The steady state response of the output sine wave is expected to be shaped by the trans-
fer function. H(j2π5) is evaluated with the corresponding component values. Then, the
gain and the phase-shift are obtained from the transfer function:

H(j2π5) =
280× 4× 10−6 × j2π5

600× 10−3 × 4× 10−6 (j2π5)2 + 280× 4× 10−6 × j2π5 + 1
= 1.24×10−3+3.52×10−2 i

|H(j2π5)| = 0.0352

∠H(j2π5) = 87.98°

After the initial transients have died down, one would expect a sine wave with V =
5×0.0352 = 0.176 V and with a positive phase shift of almost 90°. That is exactly what
can be observed in Figure 45b. After the initial overshoot, the system reaches its steady
state after a similar settling time as in subsection 3.3.2 and varies with the parameters
stated above.

42

(a) Input sine wave with f = 5 Hz (b) Corresponding Output Waveform

Figure 45: RLC-Circuit response to sine wave of f = 5 Hz

The next input is a sine wave with f = 110 Hz and V = 5 V, which is described using
the following MATLAB function:

funcvin = @(t)5*sin(2*pi*t*110);

tf is changed to 0.05 s. The input signal is shown in Figure 46a.

For this frequency, the following gain and phase shift are expected:

H(j2π110) = 0.965− 0.183 i

|H(j2π110)| = 0.9826

∠H(j2π110) = −10.713°

The steady-state response in Figure 46b clearly shows this behaviour. The amplitude
is 4.913 V (= 5 × 0.9826) and there is a small phase lag compared to the input signal.

110 Hz is close to the corner frequency fC =

√
1
LC

2π = 102.73Hz, which is the resonance
frequency, where the gain has its maximum of 1. The initial transient behaviour reveals
that the sine wave is continuously increasing in amplitude, as the time constant and the
period of the initial transient oscillation are of similar magnitude to the period of the
output sine wave.

(a) Input sine wave with f = 110 Hz (b) Corresponding Output Waveform

Figure 46: RLC-Circuit response to sine wave of f = 110 Hz

43

The final input signal consists of a sine wave with f = 500 Hz (see Figure 47a). tf is
further decreased to 0.035 s. The sine wave is described through the following MATLAB
function:

funcvin = @(t)5*sin(2*pi*t*500);

The transfer function for f = 500 Hz has the following properties:

H(j2π500) = 2.35× 10−2 − 0.151 i

|H(j2π500)| = 0.153

∠H(j2π500) = −81.18°

The output waveform for an input sine wave of frequency 500 Hz and amplitude of 5 V
is expected to lag behind the input sine wave by 81.18°. The amplitude will equal
0.766 V (= 5 × 0.153). Plotting the graph for the output waveform confirms this be-
haviour (see Figure 47b). As the frequency of the input signal grows larger than of the
transient oscillations, the initial transient behaviour looks like a varying offset for the
output sine wave.

(a) Input sine wave with f = 500 Hz (b) Corresponding Output Waveform

Figure 47: RLC-Circuit response to sine wave of f = 500 Hz

44

4. Exercise 4: Diffusion of heat along a wire

4.1. The heat equation, and obtaining a calculable expression

We consider the heat of a wire as a function of space and time. The wire is taken to be
sufficiently thin that only a single spacial dimension is of significance.

The one-dimensional heat equation is [1]

∂y

∂t
=
∂2y

∂x2
. (19)

We proceed using the finite-differences method; the terms on the LHS and RHS are re-
placed with approximations obtained from the Taylor series of y [riley1998mathematical]
and truncated to the linear term. In the limit as the number of spacial divisions Nx

and the number of temporal divisions Nt grows large, we recover the (expected) be-
havior of the analytical solution to the equation (which may not exist). In the case of
the one-dimensional heat equation, we partition space and time into a grid U , where
U tx = y(x, t), where y is the solution to Equation (19). The wire has length Lmax = 1.0
and is simulated for a duration of time Tmax = 1.0, yielding boundaries on U . The
initial condition is the heat of the wire for time t = 0, U0

x = f1(x). The boundary con-
ditions represent the heat at each end of the wire as a function of time, U t0 = f2(t) and
U tLmax

= f3(t). The increment is defined as ∆x = Lmax/Nx in space and ∆t = Tmax/Nt

in time. The equation generated from applying the approximations obtained from the
Taylor series is

U t+1
x − U tx

∆t
=
U tx+1 − 2U tx + U tx−1

(∆x)2
, (20)

which clearly becomes Equation (19) in the limit as ∆x,∆t→ 0. Rearranging for U t+1
x ,

we obtain

U t+1
x = U tx +

∆t

(∆x)2

(
U t+1
x − 2U tx + U t−1

x

)
(21)

Let r = k ∆t
(∆x)2

represent the thermal conductivity of the medium1; then, we obtain an

implementable expression for U t+1
x :

U t+1
x = (1− 2r)U tx + rU tx+1 + rU tx−1. (22)

4.2. Implementation of the finite-differences method

For the full implementation, see Appendix C.

To begin the MATLAB code, we initialize a number of constants relating to these
conditions:

1k is a material-dependent factor; without loss of generality, we took k = 1 in the earlier working. In
practice, r ≤ 0.5 as a stability consideration; later, we take k = 0.25.

45

1 L = 1.; % wire length
2 T = 1.; % max simulation time
3 Nt = 2500; % number of timesteps
4 Nx = 50; % number of spacial divisions
5 dt = T / Nt; % increment through time
6 dx = L / Nx; % increment through space

Naming the variables dx and dt may appear to be somewhat of an abuse of notation;
read these as delta-x and delta-t, rather than as differentials. This notation is preferred
because the names of the variables suggest the dimension (space or time) that each
increments, as opposed to the perhaps more ‘traditional’ names h and k.

We now determine the thermal conductivity parameter for some arbitrary choice of k.
For stability, we must ensure that r ≤ 1

2 ; our choices of Nt, Nx, L, and T provide r = k.
We choose k = 1/4, guaranteeing stability. A warning is provided to the user if r > 1

2 .

1 r = 0.25 * dt / (dx*dx);
2 if r > 0.5
3 disp('warning: for stability, r ≤ 1/2');
4 r
5 end

Anonymous (‘lambda’) functions are initialized to represent initial and boundary condi-
tions. This is relatively straightforward. Unfortunately, in MATLAB, lambdas are not
closures2; this means that variables in the scope of the declaration of the lambda will
not implicitly be captured by the lambda. Hence, the user must explicitly pass each
value used by the lambda in the function invocation.

Many initial conditions were used; these declarations are left here as commented-out
code.

1 initialcond = @(x, L, Nx) abs(sin(2*pi*x/(Nx+1)));
2 % initialcond = @(x, L, Nx) sin(2 * pi * x / (Nx+1) / L);
3 % initialcond = @(x, L, Nx) triangularPulse(0.0, L, x/(Nx+1));
4 % initialcond = @(x, L, Nx) sinc(6 * pi * ((x - (Nx+1)/2) / (Nx+1)));
5 % initialcond = @(x, L, Nx) -12.0;
6

7 leftbound = @(t, Nt) sin(2*pi*t/Nt);
8 % leftbound = @(t, Nt) -sin(2*pi*t/Nt);
9 % leftbound = @(t, Nt) 0.0;

10

11 rightbound = @(t, Nt) sin(2*pi*t/Nt);
12 % rightbound = @(t, Nt) 0.0;

An array of x-values is created to serve as the spatial axis. This is relatively premature
in the sense that this array is not needed until the computation has finished, and the

2Philosophically, some might view this as a good idea; the notion of “spooky action at a distance”
in codebases refers to the ability to break one subsystem by making a seemingly innocuous change
to another subsystem. Not including closures will mean that changes to global variables will not
disrupt the behavior of the lambda in an unclear way. Hence, while some prefer the convenience of
closures, others prefer this relatively hygienic approach.

46

data is ready for display; however, placing the line of code here minimizes the number
of loops needed.

More importantly, the initial conditions are established in this loop. This is done by
invoking the lambda function declared previously.

1 for i = 1:Nx+1
2 x(i) = (i-1)*dx;
3 u(i,1) = initialcond(i, L, Nx);
4 end

At this point, boundary conditions are established. These may be established indepen-
dently for either end of the wire and are allowed to vary with time. In this case, the

heat at either end of the wire is given by sin
(

2πt
Tmax

)
. At this point, a time axis is also

initialized, as with the spatial axis declared in the earlier loop.

1 for t = 1:Nt+1
2 u(1,t) = leftbound(t, Nt);
3 u(Nx+1, t) = rightbound(t, Nt);
4 time(t) = (t-1) * dt;
5 end

Finally, we iterate over all position and time to compute values for U tx with Equation
(22).

1 for t=1:Nt
2 for i = 2:Nx
3 u(i, t+1) = (1-2*r) * u(i,t) + r*u(i+1, t) + r*u(i-1,t);
4 end
5 end

Once computed, the solution can be displayed trivially with MATLAB’s built-in func-
tions (note the necessary cast to an integer type of sufficient width to allow a large range
of Nt):

1 figure(1)
2 plot(x,u(:,int32(0.00*Nt)+1),'-', ...
3 x,u(:,int32(0.25*Nt)),'-', ...
4 x,u(:,int32(0.50*Nt)),'-', ...
5 x,u(:,int32(0.75*Nt)),'-', ...
6 x,u(:,int32(Nt)),'-')
7 legend('t=0', 't=0.25T', 't=0.5T', 't=0.75T', 't=T')
8 figure(2)
9 mesh(x,time,u')

The resulting plots are shown in Figures 48 and 49.

47

(a) Heat distribution along the wire for selected
values of t.

(b) A mesh plot, viewed from an angle that
makes clear the tent function initial condi-
tions and sinusoidal time-varying boundary
conditions.

Figure 48: Heat of a wire for time-varying boundary conditions. The initial condition is
a triangular pulse; boundary conditions are computed along a single period
of a sine wave.

Figures 48 and 49 show temperature variation along the wire through time, as boundary
conditions change according to the function sin

(
2πt
T

)
, where T = 1 is the highest value

of t computed.

Figure 49: Heat distribution along the wire through time.

Figure 48a shows heat distribution along the wire for selected values of t. At t = 0, the
initial heat distribution (a tent function) is observable. At t = 0.25Tmax, the boundary
values of heat go to unity, and the ends of the wire act as a source of heat; as the
ends were heating up, the middle cools, leading to a concave-up graph. Because of a
symmetrical initial heat distribution and identical boundary conditions on either end of

48

the wire, there is symmetry about Lmax/2. By t = 0.5Tmax, the boundary conditions
have returned to zero, and heat once again flows from the middle of the wire to the ends.
At t = 0.75Tmax, the boundary conditions reach their minimum values, and the ends of
the wire act as a sink for heat. The temperature rises once again, such that at t = Tmax,
the ends of the wire source heat. Points of inflection are notable along the graph, as
the middle cools more slowly than the edges, as noticeable from the sharp gradient of
the graph at t = 0.75Tmax [5]. Heat flow is more clearly visualized in Figure 49, where
equipotentials vary linearly through time - i.e., heat flows at a constant speed.

Naturally, the left and right boundary conditions are independent of each other. In
this case, the left boundary condition was the additive inverse of the other. The initial
condition is the magnitude of a sine wave, as given in Equation (23c).

Figure 50: Heat distribution along the wire for unbalanced time-varying boundary con-
ditions.

49

(a) Heat distribution along the wire with asym-
metric time-varying boundary conditions,
plotted for particular values of t.

(b) Another view of (a).

Figure 51: A view of the mesh shown in Figure reffig:unbalancedboundaryoverhead, dis-
played from the side.

4.3. Solutions for various initial conditions

The above procedure demonstrates a functioning script for calculating solutions to the
one-dimensional heat equation with arbitrary initial conditions and time-varying bound-
ary conditions. Solutions are requested for time-invariant zero boundary conditions and
a number of initial conditions. The latter two, Equation (23d) and Equation (23e), were
arbitrarily chosen. Solutions were obtained for the following initial heat distributions:

f(x) =

{
2x x < 0.5

2− 2x 0.5 < x ≤ 1
(23a)

f(x) = sin

(
2πx

Lmax

)
(23b)

f(x) =

∣∣∣∣sin(2πx

Lmax

)∣∣∣∣ (23c)

f(x) = sinc

(
12πx

Lmax

)
(23d)

f(x) = −12, 0 < x < 1 (23e)

50

4.3.1. The triangular pulse

Figure 52: Heat distribution along the length of the wire for initial conditions given by
Equation (23a).

Heat diffuses outwards, down the gradient on either side. While initially there is no
particular point losing heat faster than another, points towards the extreme ends of
the axis will tend to equilibrate faster, yielding second-order effects. Noticeably, heat
distribution along the wire forms a parabola for t > 0.

(a) Temperature of a wire with initial dis-
tribution given by Equation (23a) for
selected values of t.

(b) A side view of the mesh shown in Figure
52.

Figure 53: Heat in the wire. The initial condition is a triangular pulse.

51

4.3.2. A single period of a sinusoid

The sinusoid has a sort of antisymmetry; the local maximum will act as a heat source,
while the local minimum will act as a heat sink. The end result is a rapidly-decaying
sine wave. Noticeably, by t = 0.25T , while the heat is clearly distributed sinusoidally
with no phase shift, the amplitude has diminished greatly. This is caused by the long,
steep downwards slope between the two local extrema, which moves the heat quickly
and causes the wire to very rapidly equilibrate.

Figure 54: Heat distribution along the length of the wire for initial conditions given by
Equation (23b).

(a) Temperature of a wire with initial dis-
tribution given by Equation (23b) for
selected values of t.

(b) Side view of the mesh for Equation
(23b).

Figure 55: Plots for Equation (23b).

52

4.3.3. The absolute value of one period of a sinusoid

In the case of Equation (23c), the inward gradients of the two initial heat concentrations
cause the distribution to move inwards, merging into one larger concentration, which
then diffuses outwards.

Figure 56: Heat distribution along the length of the wire for initial conditions given by
Equation (23c).

(a) Temperature of a wire with initial dis-
tribution given by Equation (23c) for se-
lected values of t.

(b) Another view of the mesh from Figure
56.

Figure 57: Heat distribution over a wire for initial conditions given by Equation (23e).

4.3.4. The sinc function

In the case of the sinc function, the behavior appeared quite granular without an increase
in the number of spatial divisions. Thus, we took k = 0.25/25 and setNx = 250; r = 0.25
as before, which provides the following:

53

Figure 58: Heat distribution along the length of the wire for initial conditions given by
Equation (23d).

(a) Temperature of a wire with initial dis-
tribution given by Equation (23d) for
selected values of t.

(b) Another view of Figure 58, tilted to
make the smaller details of the initial
conditions more readily apparent.

Figure 59: Another view of (a).

The sinc function smooths itself out quickly, as there are many instances of high slope
along the curve, which cancel each other out rapidly. Heat is concentrated in the center
(driven there by “inward” gradients), and spreads out slowly over time.

4.3.5. The potential well

Equation (23e) acts as a potential well; the boundaries are held at zero, while the initial
condition is a uniform heat distribution of substantially lower temperature. Heat flows
into the wire over time, faster at the sharp gradient near the boundary at the beginning,
then into the center of the wire. The heat at any point along the wire looks somewhat
like logistic growth, as can be seen in Figure 61b.

54

Figure 60: Heat distribution along the length of the wire for initial conditions given by
Equation (23d).

(a) Temperature of a wire with initial distribu-
tion given by Equation (23d) for selected val-
ues of t.

(b) Another view of Figure 60, from the side,
highlighting a roughly exponential increase
in heat at each position along the length of
the wire.

Figure 61: Mesh plots of Equation (23e).

55

References

[1] John Rozier Cannon. The one-dimensional heat equation. 23. Cambridge University
Press, 1984.

[2] Peter Deuflhard and Folkmar Bornemann. Scientific computing with ordinary dif-
ferential equations. Vol. 42. Springer Science & Business Media, 2012.

[3] I. Jaimoukha. System responses. https://bb.imperial.ac.uk/bbcswebdav/pid-
1015508-dt-content-rid-3468439_1/courses/DSS-EE2_06-16_17/Control\

_SS_Examinable\%281\%29.pdf. Accessed: February 25th, 2017. 2017.

[4] Autar Kaw. Runge-Kutta 2nd Order Method for Ordinary Differential Equations.
https://www.saylor.org/site/wp-content/uploads/2011/11/ME205-8.3-

TEXT.pdf. Accessed: February 27th, 2017. 2011.

[5] Frank Kreith and William Z Black. Basic heat transfer. Harper & Row New York,
1980.

[6] Editors of Wikipedia. Runge-Kutta methods. https://en.wikipedia.org/wiki/
Runge\x{fffd}\x{fffd}\x{fffd}Kutta_methods. Accessed: March 11th, 2017.
2017.

56

A. Full code listing for the RL circuit

A.1. heuns.m

1 function [t,Vout] = heuns(Vin,iL0,h,R,L,ti,tf)
2 %The heuns.m finds the solution to an ordinary differential equation ...

representing an RL-circuit and calculates Vout
3

4 a=1/2; % set scaling factor for heuns method
5 b=1/2;
6 p1=1;
7 q11=1;
8

9 func=@(t,iL) (feval(Vin,t)-R*iL)/L; % LiL'=Vin-R*iL -> iL'=f(t,iL)
10

11 N=round((tf-ti)/h); % number of steps=(interval size)/(step size)
12 t=zeros(1,N); iL=zeros(1,N); Vout=zeros(1,N); %set up arrays
13 Vout(1) = feval(Vin,ti);% calculate initial value of Vout
14 t(1)=ti; iL(1)=iL0; %set initial values of t 0, and iL at t 0
15 for j=1:N-1 % loop for N steps
16 ttemp=t(j);iLtemp=iL(j); %temporary names
17 grad1=feval(func, ttemp,iLtemp); % gradient at t,iL
18 iLp=iLtemp+q11*h*grad1; % calculate iL predictor
19 grad2=feval(func, ttemp+p1*h,iLp); % gradient at t+p1*h, iL+q11k1h
20 iL(j+1)=iLtemp+h*(a*grad1 + b*grad2); % next value of iL ...

calculated from previous values of t,iL
21 t(j+1)=ttemp+h; % increase t by stepsize
22 Vout(j+1)=feval(Vin,t(j+1))-R*iL(j+1);%calculate Vout
23 end

A.2. midpoint.m

1 function [t,Vout] = midpoint(Vin,iL0,h,R,L,ti,tf)
2 %The midpoint.m finds the solution to an ordinary differential equation
3 %representing an RL-circuit and calculates Vout
4

5 a=0; % set scaling factor for midpoint method
6 b=1;
7 p1=1/2;
8 q11=1/2;
9

10 func=@(t,iL) (feval(Vin,t)-R*iL)/L; % LiL'=Vin-R*iL -> iL'=f(t,iL)
11

12 N=round((tf-ti)/h); % number of steps=(interval size)/(step size)
13 t=zeros(1,N); iL=zeros(1,N); Vout=zeros(1,N); %set up arrays
14 Vout(1) = feval(Vin,ti);% calculate initial value of Vout
15 t(1)=ti; iL(1)=iL0; %set initial values of t 0 and iL at t 0
16 for j=1:N-1 % loop for N steps
17 ttemp=t(j);iLtemp=iL(j); %temporary names
18 grad1=feval(func, ttemp,iLtemp); % gradient at x
19 iLp=iLtemp+q11*h*grad1; % calculate iL predictor
20 grad2=feval(func, ttemp+p1*h,iLp); % gradient at x+h
21 iL(j+1)=iLtemp+h*(a*grad1 + b*grad2); % next value of iL ...

calculated from previous values of t,iL

57

22 t(j+1)=ttemp+h; % increase t by stepsize
23 Vout(j+1)=feval(Vin,t(j+1))-R*iL(j+1);%calculate Vout
24 end

A.3. ralston.m

1 function [t,Vout] = ralston(Vin,iL0,h,R,L,ti,tf)
2 %The ralston.m finds the solution to an ordinary differential equation ...

representing an RL-circuit and calculates Vout
3

4 a=1/3; % set scaling factor for ralston method
5 b=2/3;
6 p1=3/4;
7 q11=3/4;
8

9 func=@(t,iL) (feval(Vin,t)-R*iL)/L; % LiL'=Vin-R*iL -> iL'=f(t,iL)
10

11 N=round((tf-ti)/h); % number of steps=(interval size)/(step size)
12 t=zeros(1,N); iL=zeros(1,N); Vout=zeros(1,N); %set up arrays
13 Vout(1) = feval(Vin,ti);% calculate initial value of Vout
14 t(1)=ti; iL(1)=iL0; %set initial values of t 0 and iL at t 0
15 for j=1:N-1 % loop for N steps
16 ttemp=t(j);iLtemp=iL(j); %temporary names
17 grad1=feval(func, ttemp,iLtemp); % gradient at x
18 iLp=iLtemp+q11*h*grad1; % calculate iL predictor
19 grad2=feval(func, ttemp+p1*h,iLp); % gradient at x+h
20 iL(j+1)=iLtemp+h*(a*grad1 + b*grad2); % next value of iL ...

calculated from previous values of t,iL
21 t(j+1)=ttemp+h; % increase t by stepsize
22 Vout(j+1)=feval(Vin,t(j+1))-R*iL(j+1);%calculate Vout
23 end

A.4. heuns script.m

1

2 %set up initial conditions
3 iL0=0;
4 ti=0;
5

6 %define component values
7 R=0.5;
8 L=0.0015;
9

10 %there are 15 different inputs
11 for n=1:15 %define all 15 Vin
12 if(n<4)
13 if(n==1)
14 Vina = 5.5;
15 Vin=@(t) Vina*exp(0); %define input signal as function of time
16 figure
17 end
18 if(n==2)
19 Vina = 3.5;

58

20 tau = 160e-12;
21 Vin=@(t) Vina*exp(-tˆ2/tau); %define input signal as function ...

of time
22 end
23 if(n==3)
24 Vina = 3.5;
25 tau = 160e-6;
26 Vin=@(t) Vina*exp(-t/tau); %define input signal as function of ...

time
27 end
28 Vout = feval(Vin,ti)-R*iL0;
29 subplot(3,2,n);
30 plot(ti,Vout); % plot initial condition
31 end
32 if((n>3)&&(n<16))
33 if (n==4)
34 figure
35 Vina = 4.5;
36 T= 20e-6;
37 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
38 end
39 if (n==5)
40 Vina = 4.5;
41 T= 160e-6;
42 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
43 end
44 if (n==6)
45 Vina = 4.5;
46 T= 450e-6;
47 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
48 end
49 if (n==7)
50 Vina = 4.5;
51 T= 1000e-6;
52 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
53 end
54 if (n==8)
55 Vina = 4.5;
56 T= 20e-6;
57 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
58 end
59 if (n==9)
60 Vina = 4.5;
61 T= 160e-6;
62 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
63 end
64 if (n==10)
65 Vina = 4.5;
66 T= 450e-6;
67 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
68 end
69 if (n==11)
70 Vina = 4.5;

59

71 T= 1000e-6;
72 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
73 end
74 if (n==12)
75 Vina = 4.5;
76 T= 20e-6;
77 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
78 end
79 if (n==13)
80 Vina = 4.5;
81 T= 160e-6;
82 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
83 end
84 if (n==14)
85 Vina = 4.5;
86 T= 450e-6;
87 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
88 end
89 if (n==15)
90 Vina = 4.5;
91 T= 1000e-6;
92 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
93 end
94 nn=n-3;
95 Vout = feval(Vin,ti)-R*iL0;
96 subplot(3,4,nn);
97 plot(ti,Vout); % plot initial condition
98 end
99

100 if(n==1) %plots all 15 Vout against time
101 h=10e-7; % set step-size
102 tf=0.04; % set final value of t
103 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
104 subplot(3,2,1);
105 plot(t,Vout); % plot Vout against t
106 title('Heuns Vin=5.5V')
107 xlabel('Time [s]') % x-axis label
108 ylabel('Vout [V]') % y-axis label
109 end
110

111 if(n==2)
112

113 h=10e-7; % set step-size
114 tf=0.0001; % set final value of t
115 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
116 subplot(3,2,2);
117 plot(t,Vout); % plot Vout against t
118 title('Heuns Vin=Vin exp(-tˆ2/tau)')
119 xlabel('Time [s]') % x-axis label
120 ylabel('Vout [V]') % y-axis label
121 end
122

123 if(n==3)

60

124

125 h=10e-7; % set step-size
126 tf=0.003; % set final value of t
127 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
128 subplot(3,2,3);
129 plot(t,Vout); % plot Vout against t
130 title('Heuns Vin=Vin exp(-t/tau)')
131 xlabel('Time [s]') % x-axis label
132 ylabel('Vout [V]') % y-axis label
133 end
134

135 if(n==4)
136 h=10e-9; % set step-size
137 tf=0.00004; % set final value of t
138 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
139 subplot(3,4,1);
140 plot(t,Vout); % plot t against Vout
141 title('Heuns Vin=4.5sin(2pit/T) T = 20e-6s')
142 xlabel('Time [s]') % x-axis label
143 ylabel('Vout [V]') % y-axis label
144 end
145

146 if(n==5)
147 h=10e-7; % set step-size
148 tf=0.00032; % set final value of t
149 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
150 subplot(3,4,2);
151 plot(t,Vout); % plot Vout against t
152 title('Heuns Vin=4.5sin(2pit/T) T = 160e-6s')
153 xlabel('Time [s]') % x-axis label
154 ylabel('Vout [V]') % y-axis label
155 end
156

157 if(n==6)
158 h=10e-7; % set step-size
159 tf=0.0009; % set final value of t
160 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
161 subplot(3,4,3);
162 plot(t,Vout); % plot Vout against t
163 title('Heuns Vin=4.5sin(2pit/T) T = 450e-6s')
164 xlabel('Time [s]') % x-axis label
165 ylabel('Vout [V]') % y-axis label
166 end
167

168 if(n==7)
169 h=10e-7; % set step-size
170 tf=0.002; % set final value of t
171 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
172 subplot(3,4,4);
173 plot(t,Vout); % plot Vout against t
174 title('Heuns Vin=4.5sin(2pit/T) T = 1000e-6s')
175 xlabel('Time [s]') % x-axis label
176 ylabel('Vout [V]') % y-axis label
177 end
178

61

179 if(n==8)
180 h=10e-9; % set step-size
181 tf=0.00004; % set final value of t
182 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
183 subplot(3,4,5);
184 plot(t,Vout); % plot Vout against t
185 title('Heuns Vin=4.5square(2pit/T) T = 20e-6s')
186 xlabel('Time [s]') % x-axis label
187 ylabel('Vout [V]') % y-axis label
188 end
189

190 if(n==9)
191 h=10e-7; % set step-size
192 tf=0.00032; % set final value of t
193 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
194 subplot(3,4,6);
195 plot(t,Vout); % plot Vout against t
196 title('Heuns Vin=4.5square(2pit/T) T = 160e-6s')
197 xlabel('Time [s]') % x-axis label
198 ylabel('Vout [V]') % y-axis label
199 end
200

201 if(n==10)
202 h=10e-7; % set step-size
203 tf=0.0009; % set final value of t
204 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
205 subplot(3,4,7);
206 plot(t,Vout); % plot Vout against t
207 title('Heuns Vin=4.5square(2pit/T) T = 450e-6s')
208 xlabel('Time [s]') % x-axis label
209 ylabel('Vout [V]') % y-axis label
210 end
211

212 if(n==11)
213 h=10e-7; % set step-size
214 tf=0.002; % set final value of t
215 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
216 subplot(3,4,8);
217 plot(t,Vout); % plot Vout against t
218 title('Heuns Vin=4.5square(2pit/T) T = 1000e-6s')
219 xlabel('Time [s]') % x-axis label
220 ylabel('Vout [V]') % y-axis label
221 end
222

223 if(n==12)
224 h=10e-9; % set step-size
225 tf=0.00004; % set final value of t
226 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
227 subplot(3,4,9);
228 plot(t,Vout); % plot Vout against t
229 title('Heuns Vin=4.5sawtooth(2pit/T) T = 20e-6s')
230 xlabel('Time [s]') % x-axis label
231 ylabel('Vout [V]') % y-axis label
232 end
233

62

234 if(n==13)
235 h=10e-7; % set step-size
236 tf=0.00032; % set final value of t
237 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
238 subplot(3,4,10);
239 plot(t,Vout); % plot Vout against t
240 title('Heuns Vin=4.5sawtooth(2pit/T) T = 160e-6s')
241 xlabel('Time [s]') % x-axis label
242 ylabel('Vout [V]') % y-axis label
243 end
244

245 if(n==14)
246 h=10e-7; % set step-size
247 tf=0.0009; % set final value of t
248 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
249 subplot(3,4,11);
250 plot(t,Vout); % plot Vout against t
251 title('Heuns Vin=4.5sawtooth(2pit/T) T = 450e-6s')
252 xlabel('Time [s]') % x-axis label
253 ylabel('Vout [V]') % y-axis label
254 end
255

256 if(n==15)
257 h=10e-7; % set step-size
258 tf=0.002; % set final value of t
259 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and t ...

using heun's method
260 subplot(3,4,12);
261 plot(t,Vout); % plot Vout against t
262 title('Heuns Vin=4.5sawtooth(2pit/T) T = 1000e-6s')
263 xlabel('Time [s]') % x-axis label
264 ylabel('Vout [V]') % y-axis label
265 end
266

267

268 end

A.5. midpoint script.m

1 %set up initial conditions
2 iL0=0;
3 ti=0;
4

5 %define component values
6 R=0.5;
7 L=0.0015;
8

9 for n=1:15 %defines all 15 Vin
10 if(n<4)
11 if(n==1)
12 Vina = 5.5;
13 Vin=@(t) Vina*exp(0); %define input signal as function of time
14 figure
15 end

63

16 if(n==2)
17 Vina = 3.5;
18 tau = 160e-12;
19 Vin=@(t) Vina*exp(-tˆ2/tau); %define input signal as function ...

of time
20 end
21 if(n==3)
22 Vina = 3.5;
23 tau = 160e-6;
24 Vin=@(t) Vina*exp(-t/tau); %define input signal as function of ...

time
25 end
26 Vout = feval(Vin,ti)-R*iL0;
27 subplot(3,2,n);
28 plot(ti,Vout); % plot initial condition
29 end
30 if((n>3)&&(n<16))
31 if (n==4)
32 figure
33 Vina = 4.5;
34 T= 20e-6;
35 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
36 end
37 if (n==5)
38 Vina = 4.5;
39 T= 160e-6;
40 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
41 end
42 if (n==6)
43 Vina = 4.5;
44 T= 450e-6;
45 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
46 end
47 if (n==7)
48 Vina = 4.5;
49 T= 1000e-6;
50 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
51 end
52 if (n==8)
53 Vina = 4.5;
54 T= 20e-6;
55 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
56 end
57 if (n==9)
58 Vina = 4.5;
59 T= 160e-6;
60 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
61 end
62 if (n==10)
63 Vina = 4.5;
64 T= 450e-6;
65 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
66 end

64

67 if (n==11)
68 Vina = 4.5;
69 T= 1000e-6;
70 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
71 end
72 if (n==12)
73 Vina = 4.5;
74 T= 20e-6;
75 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
76 end
77 if (n==13)
78 Vina = 4.5;
79 T= 160e-6;
80 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
81 end
82 if (n==14)
83 Vina = 4.5;
84 T= 450e-6;
85 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
86 end
87 if (n==15)
88 Vina = 4.5;
89 T= 1000e-6;
90 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
91 end
92 nn=n-3;
93 Vout = feval(Vin,ti)-R*iL0;
94 subplot(3,4,nn);
95 plot(ti,Vout); % plot initial condition
96 end
97

98 if(n==1) %plots all 15 Vout against time
99 h=10e-7; % set step-size

100 tf=0.04; % set final value of t
101 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
102 subplot(3,2,1);
103 plot(t,Vout); % plot Vout against t
104 title('Midpoint Vin=5.5V')
105 xlabel('Time [s]') % x-axis label
106 ylabel('Vout [V]') % y-axis label
107 end
108

109 if(n==2)
110

111 h=10e-7; % set step-size
112 tf=0.0001; % set final value of t
113 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
114 subplot(3,2,2);
115 plot(t,Vout); % plot Vout against t
116 title('Midpoint Vin=Vin exp(-tˆ2/tau)')
117 xlabel('Time [s]') % x-axis label
118 ylabel('Vout [V]') % y-axis label
119 end

65

120

121 if(n==3)
122

123 h=10e-7; % set step-size
124 tf=0.003; % set final value of t
125 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
126 subplot(3,2,3);
127 plot(t,Vout); % plot Vout against t
128 title('Midpoint Vin=Vin exp(-t/tau)')
129 xlabel('Time [s]') % x-axis label
130 ylabel('Vout [V]') % y-axis label
131 end
132

133 if(n==4)
134 h=10e-9; % set step-size
135 tf=0.00004; % set final value of t
136 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
137 subplot(3,4,1);
138 plot(t,Vout); % plot Vout against t
139 title('Midpoint Vin=4.5sin(2pit/T) T = 20e-6s')
140 xlabel('Time [s]') % x-axis label
141 ylabel('Vout [V]') % y-axis label
142 end
143

144 if(n==5)
145 h=10e-7; % set step-size
146 tf=0.00032; % set final value of t
147 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
148 subplot(3,4,2);
149 plot(t,Vout); % plot Vout against t
150 title('Midpoint Vin=4.5sin(2pit/T) T = 160e-6s')
151 xlabel('Time [s]') % x-axis label
152 ylabel('Vout [V]') % y-axis label
153 end
154

155 if(n==6)
156 h=10e-7; % set step-size
157 tf=0.0009; % set final value of t
158 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
159 subplot(3,4,3);
160 plot(t,Vout); % plot Vout against t
161 title('Midpoint Vin=4.5sin(2pit/T) T = 450e-6s')
162 xlabel('Time [s]') % x-axis label
163 ylabel('Vout [V]') % y-axis label
164 end
165

166 if(n==7)
167 h=10e-7; % set step-size
168 tf=0.002; % set final value of t
169 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
170 subplot(3,4,4);
171 plot(t,Vout); % plot Vout against t
172 title('Midpoint Vin=4.5sin(2pit/T) T = 1000e-6s')
173 xlabel('Time [s]') % x-axis label
174 ylabel('Vout [V]') % y-axis label

66

175 end
176

177 if(n==8)
178 h=10e-9; % set step-size
179 tf=0.00004; % set final value of t
180 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
181 subplot(3,4,5);
182 plot(t,Vout); % plot Vout against t
183 title('Midpoint Vin=4.5square(2pit/T) T = 20e-6s')
184 xlabel('Time [s]') % x-axis label
185 ylabel('Vout [V]') % y-axis label
186 end
187

188 if(n==9)
189 h=10e-7; % set step-size
190 tf=0.00032; % set final value of t
191 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
192 subplot(3,4,6);
193 plot(t,Vout); % plot Vout against t
194 title('Midpoint Vin=4.5square(2pit/T) T = 160e-6s')
195 xlabel('Time [s]') % x-axis label
196 ylabel('Vout [V]') % y-axis label
197 end
198

199 if(n==10)
200 h=10e-7; % set step-size
201 tf=0.0009; % set final value of t
202 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
203 subplot(3,4,7);
204 plot(t,Vout); % plot Vout against t
205 title('Midpoint Vin=4.5square(2pit/T) T = 450e-6s')
206 xlabel('Time [s]') % x-axis label
207 ylabel('Vout [V]') % y-axis label
208 end
209

210 if(n==11)
211 h=10e-7; % set step-size
212 tf=0.002; % set final value of t
213 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
214 subplot(3,4,8);
215 plot(t,Vout); % plot Vout against t
216 title('Midpoint Vin=4.5square(2pit/T) T = 1000e-6s')
217 xlabel('Time [s]') % x-axis label
218 ylabel('Vout [V]') % y-axis label
219 end
220

221 if(n==12)
222 h=10e-9; % set step-size
223 tf=0.00004; % set final value of t
224 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
225 subplot(3,4,9);
226 plot(t,Vout); % plot Vout against t
227 title('Midpoint Vin=4.5sawtooth(2pit/T) T = 20e-6s')
228 xlabel('Time [s]') % x-axis label
229 ylabel('Vout [V]') % y-axis label

67

230 end
231

232 if(n==13)
233 h=10e-7; % set step-size
234 tf=0.00032; % set final value of t
235 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
236 subplot(3,4,10);
237 plot(t,Vout); % plot Vout against t
238 title('Midpoint Vin=4.5sawtooth(2pit/T) T = 160e-6s')
239 xlabel('Time [s]') % x-axis label
240 ylabel('Vout [V]') % y-axis label
241 end
242

243 if(n==14)
244 h=10e-7; % set step-size
245 tf=0.0009; % set final value of t
246 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
247 subplot(3,4,11);
248 plot(t,Vout); % plot Vout against t
249 title('Midpoint Vin=4.5sawtooth(2pit/T) T = 450e-6s')
250 xlabel('Time [s]') % x-axis label
251 ylabel('Vout [V]') % y-axis label
252 end
253

254 if(n==15)
255 h=10e-7; % set step-size
256 tf=0.002; % set final value of t
257 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using midpoint method
258 subplot(3,4,12);
259 plot(t,Vout); % plot Vout against t
260 title('Midpoint Vin=4.5sawtooth(2pit/T) T = 1000e-6s')
261 xlabel('Time [s]') % x-axis label
262 ylabel('Vout [V]') % y-axis label
263 end
264

265 end

A.6. ralston script.m

1 %set up initial conditions
2 iL0=0;
3 ti=0;
4

5 %define component values
6 R=0.5;
7 L=0.0015;
8

9 %there are 15 different inputs
10 for n=1:15 %define 15 Vin
11 if(n<4)
12 if(n==1)
13 Vina = 5.5;
14 Vin=@(t) Vina*exp(0); %define input signal as function of time

68

15 figure
16 end
17 if(n==2)
18 Vina = 3.5;
19 tau = 160e-12;
20 Vin=@(t) Vina*exp(-tˆ2/tau); %define input signal as function ...

of time
21 end
22 if(n==3)
23 Vina = 3.5;
24 tau = 160e-6;
25 Vin=@(t) Vina*exp(-t/tau); %define input signal as function of ...

time
26 end
27 Vout = feval(Vin,ti)-R*iL0;
28 subplot(3,2,n);
29 plot(ti,Vout); % plot initial condition
30 end
31 if((n>3)&&(n<16))
32 if (n==4)
33 figure
34 Vina = 4.5;
35 T= 20e-6;
36 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
37 end
38 if (n==5)
39 Vina = 4.5;
40 T= 160e-6;
41 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
42 end
43 if (n==6)
44 Vina = 4.5;
45 T= 450e-6;
46 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
47 end
48 if (n==7)
49 Vina = 4.5;
50 T= 1000e-6;
51 Vin=@(t) Vina*sin(2*pi*t/T); %define input signal as function ...

of time
52 end
53 if (n==8)
54 Vina = 4.5;
55 T= 20e-6;
56 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
57 end
58 if (n==9)
59 Vina = 4.5;
60 T= 160e-6;
61 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
62 end
63 if (n==10)
64 Vina = 4.5;
65 T= 450e-6;

69

66 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...
function of time

67 end
68 if (n==11)
69 Vina = 4.5;
70 T= 1000e-6;
71 Vin=@(t) Vina*square(2*pi*t/T); %define input signal as ...

function of time
72 end
73 if (n==12)
74 Vina = 4.5;
75 T= 20e-6;
76 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
77 end
78 if (n==13)
79 Vina = 4.5;
80 T= 160e-6;
81 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
82 end
83 if (n==14)
84 Vina = 4.5;
85 T= 450e-6;
86 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
87 end
88 if (n==15)
89 Vina = 4.5;
90 T= 1000e-6;
91 Vin=@(t) Vina*sawtooth(2*pi*t/T); %define input signal as ...

function of time
92 end
93 nn=n-3;
94 Vout = feval(Vin,ti)-R*iL0;
95 subplot(3,4,nn);
96 plot(ti,Vout); % plot initial condition
97 end
98

99

100 if(n==1) %plots all 15 Vout against time
101 h=10e-7; % set step-size
102 tf=0.04; % set final value of t
103 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
104 subplot(3,2,1);
105 plot(t,Vout); % plot Vout against t
106 title('Ralston Vin=5.5V')
107 xlabel('Time [s]') % x-axis label
108 ylabel('Vout [V]') % y-axis label
109 end
110

111 if(n==2)
112

113 h=10e-7; % set step-size
114 tf=0.0001; % set final value of t
115 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
116 subplot(3,2,2);
117 plot(t,Vout); % plot Vout against t

70

118 title('Ralston Vin=Vin exp(-tˆ2/tau)')
119 xlabel('Time [s]') % x-axis label
120 ylabel('Vout [V]') % y-axis label
121 end
122

123 if(n==3)
124

125 h=10e-7; % set step-size
126 tf=0.003; % set final value of t
127 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
128 subplot(3,2,3);
129 plot(t,Vout); % plot Vout against t
130 title('Ralston Vin=Vin exp(-t/tau)')
131 xlabel('Time [s]') % x-axis label
132 ylabel('Vout [V]') % y-axis label
133 end
134

135 if(n==4)
136 h=10e-9; % set step-size
137 tf=0.00004; % set final value of t
138 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
139 subplot(3,4,1);
140 plot(t,Vout); % plot Vout against t
141 title('Ralston Vin=4.5sin(2pit/T) T = 20e-6s')
142 xlabel('Time [s]') % x-axis label
143 ylabel('Vout [V]') % y-axis label
144 end
145

146 if(n==5)
147 h=10e-7; % set step-size
148 tf=0.00032; % set final value of t
149 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
150 subplot(3,4,2);
151 plot(t,Vout); % plot Vout against t
152 title('Ralston Vin=4.5sin(2pit/T) T = 160e-6s')
153 xlabel('Time [s]') % x-axis label
154 ylabel('Vout [V]') % y-axis label
155 end
156

157 if(n==6)
158 h=10e-7; % set step-size
159 tf=0.0009; % set final value of t
160 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
161 subplot(3,4,3);
162 plot(t,Vout); % plot Vout against t
163 title('Ralston Vin=4.5sin(2pit/T) T = 450e-6s')
164 xlabel('Time [s]') % x-axis label
165 ylabel('Vout [V]') % y-axis label
166 end
167

168 if(n==7)
169 h=10e-7; % set step-size
170 tf=0.002; % set final value of t
171 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
172 subplot(3,4,4);

71

173 plot(t,Vout); % plot Vout against t
174 title('Ralston Vin=4.5sin(2pit/T) T = 1000e-6s')
175 xlabel('Time [s]') % x-axis label
176 ylabel('Vout [V]') % y-axis label
177 end
178

179 if(n==8)
180 h=10e-9; % set step-size
181 tf=0.00004; % set final value of t
182 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
183 subplot(3,4,5);
184 plot(t,Vout); % plot Vout against t
185 title('Ralston Vin=4.5square(2pit/T) T = 20e-6s')
186 xlabel('Time [s]') % x-axis label
187 ylabel('Vout [V]') % y-axis label
188 end
189

190 if(n==9)
191 h=10e-7; % set step-size
192 tf=0.00032; % set final value of t
193 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
194 subplot(3,4,6);
195 plot(t,Vout); % plot Vout against t
196 title('Ralston Vin=4.5square(2pit/T) T = 160e-6s')
197 xlabel('Time [s]') % x-axis label
198 ylabel('Vout [V]') % y-axis label
199 end
200

201 if(n==10)
202 h=10e-7; % set step-size
203 tf=0.0009; % set final value of t
204 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
205 subplot(3,4,7);
206 plot(t,Vout); % plot Vout against t
207 title('Midpoint Vin=4.5square(2pit/T) T = 450e-6s')
208 xlabel('Time [s]') % x-axis label
209 ylabel('Vout [V]') % y-axis label
210 end
211

212 if(n==11)
213 h=10e-7; % set step-size
214 tf=0.002; % set final value of t
215 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
216 subplot(3,4,8);
217 plot(t,Vout); % plot Vout against t
218 title('Ralston Vin=4.5square(2pit/T) T = 1000e-6s')
219 xlabel('Time [s]') % x-axis label
220 ylabel('Vout [V]') % y-axis label
221 end
222

223 if(n==12)
224 h=10e-9; % set step-size
225 tf=0.00004; % set final value of t
226 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
227 subplot(3,4,9);

72

228 plot(t,Vout); % plot Vout against t
229 title('Ralston Vin=4.5sawtooth(2pit/T) T = 20e-6s')
230 xlabel('Time [s]') % x-axis label
231 ylabel('Vout [V]') % y-axis label
232 end
233

234 if(n==13)
235 h=10e-7; % set step-size
236 tf=0.00032; % set final value of t
237 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
238 subplot(3,4,10);
239 plot(t,Vout); % plot Vout against t
240 title('Ralston Vin=4.5sawtooth(2pit/T) T = 160e-6s')
241 xlabel('Time [s]') % x-axis label
242 ylabel('Vout [V]') % y-axis label
243 end
244

245 if(n==14)
246 h=10e-7; % set step-size
247 tf=0.0009; % set final value of t
248 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
249 subplot(3,4,11);
250 plot(t,Vout); % plot Vout against t
251 title('Ralston Vin=4.5sawtooth(2pit/T) T = 450e-6s')
252 xlabel('Time [s]') % x-axis label
253 ylabel('Vout [V]') % y-axis label
254 end
255

256 if(n==15)
257 h=10e-7; % set step-size
258 tf=0.002; % set final value of t
259 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf); %obtain arrays of Vout and ...

t using ralston method
260 subplot(3,4,12);
261 plot(t,Vout); % plot Vout against t
262 title('Ralston Vin=4.5sawtooth(2pit/T) T = 1000e-6s')
263 xlabel('Time [s]') % x-axis label
264 ylabel('Vout [V]') % y-axis label
265 end
266

267 end

A.7. error script.m

1 iL0=0; % set initial values
2 ti=0;
3 R=0.5; % set constant values
4 L=0.0015;
5 A=6;
6 Vina = 6;
7 T= 150e-6;
8 Vin=@(t) Vina*cos(2*pi*t/T); % set Vin
9 c=((A*R*Tˆ2)/(4*piˆ2*Lˆ2+Rˆ2*Tˆ2)); %c for exact solution

10

73

11 tf=0.0003; % set final value of t
12

13 for n=1:3
14

15 if(n==1)
16 h=10e-7; % set step-size
17 [t,Vout]=heuns(Vin,iL0,h,R,L,ti,tf);
18 figure
19 subplot(3,2,1);
20 plot(t,Vout); % plot heuns Vout against t
21 title('Heuns Vin=6cos(2*pi*t/150e-6)')
22 xlabel('Time [s]') % x-axis label
23 ylabel('Vout [V]') % y-axis label
24 end
25 if(n==2)
26 h=10e-7; % set step-size
27 [t,Vout]=midpoint(Vin,iL0,h,R,L,ti,tf);
28 figure
29 subplot(3,2,1);
30 plot(t,Vout); % plot heuns Vout against t
31 title('Midpoint Vin=6cos(2*pi*t/150e-6)')
32 xlabel('Time [s]') % x-axis label
33 ylabel('Vout [V]') % y-axis label
34 end
35 if(n==3)
36 h=10e-7; % set step-size
37 [t,Vout]=ralston(Vin,iL0,h,R,L,ti,tf);
38 figure
39 subplot(3,2,1);
40 plot(t,Vout); % plot heuns Vout against t
41 title('Ralston Vin=6cos(2*pi*t/150e-6)')
42 xlabel('Time [s]') % x-axis label
43 ylabel('Vout [V]') % y-axis label
44 end
45 iL exact=((2*A*pi*T*L*sin((2*pi*t)/T)+A*R*Tˆ2*cos((2*pi*t)/T))
46 /(4*piˆ2*Lˆ2+Rˆ2*Tˆ2))-(c*exp(-R*t/L)); %calculate exact solution
47 Vout exact=feval(Vin,t)-R*iL exact; % calculate Vout for exact iL
48 subplot(3,2,2);
49 plot(t,Vout exact); %plot exact solution
50 title('Exact solution of the ODE')
51 xlabel('Time [s]') % x-axis label
52 ylabel('Vout [V]') % y-axis label
53 error=abs(Vout exact-Vout); % calculate maximum error over range of x
54 subplot(3,2,[3,4]);
55 plot(t,error); % plot error against t
56 title('Error against time')
57 xlabel('Time [s]') % x-axis label
58 ylabel('Error [V]') % y-axis label
59

60 subplot(3,2,[5,6]);
61 h = zeros(1,10); %initialize arrays
62 errororder = zeros(1,10);
63 count = 1; %initiallize count
64

65

66

67 if(n==1)
68 hi=1e-9;hh=1e-9;hf=1e-7; % set initial step-size, ...

increment in step-size and final step-size value
69 h=hi:hh:hf;

74

70 Nh=round((hf-hi)/hh)+1; % number of steps=(interval size of ...
step-size)/(increment in step-size)

71 for count=1:Nh
72 [t,Vout]=heuns(Vin,iL0,h(count),R,L,ti,tf);% call heuns.m
73 iL exact=((2*A*pi*T*L*sin((2*pi*t)/T)+A*R*Tˆ2*cos((2*pi*t)/T))
74 /(4*piˆ2*Lˆ2+Rˆ2*Tˆ2))-(c*exp(-R*t/L)); %calculate exact solution
75 Vout exact=feval(Vin,t)-R*iL exact; % calculate Vout using ...

exact solution iL
76 errororder(count)=max(abs(Vout exact-Vout)); % calculate ...

maximum error over range of x
77 hold on;
78 end
79 hold off;
80 plot(log(h),log(errororder));
81 gradheuns=polyfit(log(h), log(errororder),1);
82 end
83

84 if(n==2)
85 hi=1e-9;hh=1e-9;hf=1e-7; % set initial step-size, ...

increment in step-size and final step-size value
86 h=hi:hh:hf;
87 Nh=round((hf-hi)/hh)+1; % number of steps=(interval size of ...

step-size)/(increment in step-size)
88 for count=1:Nh
89 [t,Vout]=midpoint(Vin,iL0,h(count),R,L,ti,tf);% call heuns.m
90 iL exact=((2*A*pi*T*L*sin((2*pi*t)/T)+A*R*Tˆ2*cos((2*pi*t)/T))
91 /(4*piˆ2*Lˆ2+Rˆ2*Tˆ2))-(c*exp(-R*t/L)); %calculate exact solution
92 Vout exact=feval(Vin,t)-R*iL exact; % calculate Vout using ...

exact solution iL
93 errororder(count)=max(abs(Vout exact-Vout)); % calculate ...

maximum error over range of x
94 hold on;
95 end
96 hold off;
97 plot(log(h),log(errororder));
98 gradmidpoint=polyfit(log(h), log(errororder),1);
99 end

100

101 if(n==3)
102 hi=1e-9;hh=1e-9;hf=1e-7; % set initial step-size, ...

increment in step-size and final step-size value
103 h=hi:hh:hf;
104 Nh=round((hf-hi)/hh)+1; % number of steps=(interval size of ...

step-size)/(increment in step-size)
105 for count=1:Nh
106 [t,Vout]=ralston(Vin,iL0,h(count),R,L,ti,tf);% call heuns.m
107 iL exact=((2*A*pi*T*L*sin((2*pi*t)/T)+A*R*Tˆ2*cos((2*pi*t)/T))
108 /(4*piˆ2*Lˆ2+Rˆ2*Tˆ2))-(c*exp(-R*t/L)); %calculate exact solution
109 Vout exact=feval(Vin,t)-R*iL exact; % calculate Vout using ...

exact solution iL
110 errororder(count)=max(abs(Vout exact-Vout)); % calculate ...

maximum error over range of x
111 hold on;
112 end
113 hold off;
114 plot(log(h),log(errororder)); % plot log log graph
115 gradralston=polyfit(log(h), log(errororder),1);% calculate gradient
116 end
117 title('log of maximum error against log of h')
118 ylabel('log error max') % x-axis label

75

119 xlabel('log h') % y-axis label
120 end

B. Full Code listing for RLC-circuit (Exercise3)

B.1. RK4second.m

1 function [xn, yn] = RK4second(funcx, funcy, h, ti, xi, yi)
2 %RK4second computes y(i+1) and x(i+1) using the Runge-Kutta 3/8 algorithm
3 % xn refers to x(i+1) and yn refers to y(i+1)
4 % funcx computes the derivative of x (dx/dt) at a point (ti, xi, yi)
5 % funcy computes the derivative of y (dy/dt) at a point (ti, xi ,yi)
6

7 %calculate coefficients (predicted gradients) at ti, ti+h/3, ti+2h/3, ti+h
8 %using Runge-Kutta 3/8
9 k1x = feval(funcx, ti, xi, yi);

10 k1y = feval(funcy, ti, xi, yi);
11 k2x = feval(funcx, ti + h/3, xi + h/3*k1x, yi + h/3*k1y);
12 k2y = feval(funcy, ti + h/3, xi + h/3*k1x, yi + h/3*k1y);
13 k3x = feval(funcx, ti + 2*h/3, xi - h/3*k1x+h*k2x, yi - h/3*k1y+h*k2y);
14 k3y = feval(funcy, ti + 2*h/3, xi - h/3*k1x+h*k2x, yi - h/3*k1y+h*k2y);
15 k4x = feval(funcx, ti+h, xi+h*k1x-h*k2x+h*k3x, yi+h*k1y-h*k2y+h*k3y);
16 k4y = feval(funcy, ti+h, xi+h*k1x-h*k2x+h*k3x, yi+h*k1y-h*k2y+h*k3y);
17

18 %obtain phix and phiy by taking weighted average of obtained gradients
19 phix = (k1x + 3*k2x + 3*k3x + k4x)/8;
20 phiy = (k1y + 3*k2y + 3*k3y + k4y)/8;
21

22 %use phi-values as approximated gradients for x and y
23 xn = xi + h*phix; %calculate x(i+1)
24 yn = yi + h*phiy; %calculate y(i+1)
25 end

B.2. RLC script.m

RLC script.m is written with the following matlab code:

1 %The RLC script calculates the voltage across R (Vout) for a given ...
input signal(Vin)

2 %The RLC Circuit script is finding the solution to a second order ...
differential equation representing an RLC-circuit

3

4 %set up initial conditions
5 q0 = 500*10ˆ(-9); %[C]; capacitor charge at t=0
6 i0 = 0; %current at t=0
7 t0 = 0; %set up starting time
8 h = 0.000001; %[s]; set up step-size for Runge-Kutta 3/8
9 tf = 0.06; %[s]; define endpoint of time-interval

10

11 %define component values
12 R = 280; %resistance equals 280 Ohm

76

13 C = 4*10ˆ(-6); %Capacitor value is 4 microFarad
14 L=600*10ˆ(-3); %Inductance is 600 milliHenry
15

16 funcvin = @(t) 5; %define input signal (step-input, tf=0.06) as ...
function of time

17

18 %the other input functions with their corresponding tf-value are stated
19 %below:
20 %funcvin = @(t) 5*exp(-tˆ2/(3*10ˆ-6)); (impulse, tf=0.06)
21 %funcvin = @(t) 5*square(2*pi*t*5); (square, f=5Hz, tf=0.5)
22 %funcvin = @(t) 5*square(2*pi*t*110); (square, f=110Hz, tf=0.05)
23 %funcvin = @(t) 5*square(2*pi*t*500); (square, f=500Hz, tf=0.03)
24 %funcvin = @(t) 5*sin(2*pi*t*5); (sine, f=5Hz, tf=0.5)
25 %funcvin = @(t) 5*sin(2*pi*t*110); (sine, f=110Hz, tf = 0.05)
26 %funcvin = @(t) 5*sin(2*pi*t*500); (sine, f=500Hz, tf = 0.035)
27

28 %set up coupled first-order equations
29 funcq = @(t, q, i) i; %gradient of q at time t (=i(t))
30 funci = @(t, q, i) (feval(funcvin, t) - R*i - 1/C * q)/L; %funci ...

calculates di/dt at time t
31

32 N = round((tf-t0)/h); %calculate number of steps to reach tf
33

34 %set up arrays to store results
35 q = zeros(1,N);
36 i = zeros(1,N);
37 t = zeros(1,N);
38

39 %first element of each array is equal to corresponding initial condition
40 q(1) = q0;
41 i(1) = i0;
42 t(1) = t0;
43

44 %use for-loop to iterate through arrays
45 %RK4second uses Runge-Kutta-3/8 algorithm to calculate next values for q
46 %and i as t is increased by h after each iteration
47 for j = 1 : N-1
48 [q(j+1),i(j+1)] = RK4second(funcq, funci, h, t(j), q(j), i(j));
49 t(j+1) = t(j) + h;
50 end
51

52 vout = i*R; %obtain Vout(t)(voltage across R) using Ohms Law
53 vin = arrayfun(funcvin, t); %calculate Vin(t)
54

55 figure;
56 plot(t, q); %plot q(t) as a function of t
57 title('Capacitor Charge (q {C}(t))');
58 xlabel('Time [s]');
59 ylabel('Charge [C]');
60

61 figure;
62 plot(t, vout); %plot Vout(t) as a function of t
63 title('Output Voltage (V {out}(t)=v {R}(t))');
64 xlabel('Time [s]');
65 ylabel('Voltage [V]');
66

67

68 figure;
69 plot(t, vin); %plot Vin(t) as a function of t
70 title('Input Signal (V {in}(t))');

77

71 xlabel('Time [s]');
72 ylabel('Voltage [V]');

C. Full code listing for the finite differences method

C.1. finite script.m

1 L = 1.; % wire length
2 T = 1.; % max simulation time
3 Nt = 2500; % number of timesteps
4 Nx = 50; % number of spacial divisions
5 dt = T / Nt; % increment through time
6 dx = L / Nx; % increment through space
7

8 % conductivity parameter
9 r = 0.25 * dt / (dx*dx);

10 if r > 0.5
11 % von neumann stability criterion has been violated
12 disp('warning: for stability, r ≤ 1/2');
13 r
14 end
15

16 % lambdas to compute initial wire heat distribution
17 initialcond = @(x, L, Nx) abs(sin(2*pi*x/(Nx+1)));
18 % initialcond = @(x, L, Nx) sin(2 * pi * x / (Nx+1) / L);
19 % initialcond = @(x, L, Nx) triangularPulse(0.0, L, x/(Nx+1));
20 % initialcond = @(x, L, Nx) sinc(6 * pi * ((x - (Nx+1)/2) / (Nx+1)));
21 % initialcond = @(x, L, Nx) -12.0;
22

23 % lambdas to compute heat at edge of wire for x=0
24 leftbound = @(t, Nt) sin(2*pi*t/Nt);
25 % leftbound = @(t, Nt) -sin(2*pi*t/Nt);
26 % leftbound = @(t, Nt) 0.0;
27

28 % lambdas to compute heat at edge of wire for x=L
29 rightbound = @(t, Nt) sin(2*pi*t/Nt);
30 % rightbound = @(t, Nt) 0.0;
31

32 % compute initial conditions and make an x-axis for plotting
33 for i = 1:Nx+1
34 x(i) = (i-1)*dx;
35 u(i,1) = initialcond(i, L, Nx);
36 end
37

38 % compute boundary conditions and make a time-axis for plotting
39 for t = 1:Nt+1
40 u(1,t) = leftbound(t, Nt);
41 u(Nx+1, t) = rightbound(t, Nt);
42 time(t) = (t-1) * dt;
43 end
44

45 % go-time; iterate over entire matrix
46 for t=1:Nt
47 for i = 2:Nx
48 % directly from the expression we obtained

78

49 u(i, t+1) = (1-2*r) * u(i,t) + r*u(i+1, t) + r*u(i-1,t);
50 end
51 end
52

53 figure(1)
54 % plot snapshots of heat distribution for [0, 0.25, 0.5, 0.75, 1] * T
55 % even time spacing means this plot indicates how fast heat is diffusing
56 % too many more or fewer would mean the plot would be cluttered, IMO
57 plot(x,u(:,int32(0.00*N t)+1),'-', ...
58 x,u(:,int32(0.25*N t)),'-', ...
59 x,u(:,int32(0.50*N t)),'-', ...
60 x,u(:,int32(0.75*N t)),'-', ...
61 x,u(:,int32(N t)),'-')
62 legend('t=0', 't=0.25T', 't=0.5T', 't=0.75T', 't=T')
63 figure(2)
64 % 3d plot, with a space and a time axis; I prefer this for showing ...

variation,
65 % especially with an overhead view
66 mesh(x,time,u')

79

