
Pattern Recognition - Coursework 2

Koral Hassan, Mohika Gupta
Imperial College London

Kensington, London SW7 2AZ
kbh15@ic.ac.uk, mg5215@ic.ac.uk

Abstract

The CUHK03 dataset is used to experiment with identity
matching. First, the multi-class classification problem is
formally defined. Then, some baseline classifiers are imple-
mented and compared against improved approaches. Dis-
tance metric learning is utilised and the challenges each
model solves are discussed. Among the different methods
are k-NN, k-means, MMC and LMNN.

1. The Problem

The aim is to be able to identify a new image of a person
from a new angle. We possess previous images of the same
person taken from a different angle. We also possess images
of other people from the same angles. Therefore, we wish
to successfully match the new image to the old images of
the same person. Furthermore, we want the model to work
for any previously unencountered group of people.

This functionality is similar to Google Photos going
through a gallery and distinctly categorizing the different
people that appear in the pictures.

The model should not learn the characteristics of specific
people in the training dataset. Rather, it should learn to re-
late any new image to any previous group of images. To this
end, we will be using two different sets of people with no
overlap for our training and testing datasets.

2. The Dataset

The CUHK03 dataset containing 13,164 images of 1,360
pedestrians is used. Images in this dataset were captured
with the use of 2 cameras and each person photographed ap-
proximately 8-9 times. Along with this, a file containing the
feature vectors representing each image in the dataset was
used. Each image in the dataset has corresponding ’camID’
and ’labels’ label where ’camID’ refers to the camera used
to take the image and ’labels’ is used to identify pedestrians.

2.1. Pre-processing

The MATLAB file provided contained data labels and
the indices to use to split the array containing the fea-
tures vectors into training, query and gallery subsets. Since
Python was used to process this data, all the indices pro-
vided had to be offset by -1 before use.

Once the features were split into training, query and
gallery, they were standardized with respect to the training
data. The mean µ and standard deviation σ of the train-
ing features was calculated. Then every sample xi in the
dataset was standardized using these values as: zi = xi−µ

σ .
The motivation behind standardization of the dataset was to
make the the individual features looks more like standard
Gaussian distributed data, with mean zero and unit vari-
ance, to ensure an estimator can learn from all features as
expected.

2.2. Validation

A part of our training set was initially set aside for the
purposes of validation. We selected 115 unique identities
out of the 767 found in the training set (15%). However, the
set could not validate any results. The models’ accuracies
on the validation set were highly correlated to the accura-
cies on the training set. That is to say, the validation set was
incapable of providing any additional valuable insights. For
the same reasons, the validation accuracy was so high that
varying the hyper-parameters produced no significant dif-
ference.

The reason for the unusually high correlation was the
feature extraction process. The extraction algorithm was
developed on the entirety of the training set. Crucially, this
set included both of our newly split training and valida-
tion sets. This apparently benign inclusion actually causes
a data leakage, making our validation accuracies unreliably
high. The same noise characteristics are present in the train-
ing and validation features since the extraction process took
both into account. The validation set should have actually
been set aside before the feature extraction process.

1



Figure 1. KNN and K-means Baseline Retrieval Accuracy

The aforementioned unreliability can be clearly demon-
strated by comparing the training, validation, and testing
accuracies, as was done in Figure 1. The testing set was
not involved in the feature extraction process so gives an
accurate representation of the out-of-sample error. The val-
idation error is similar to the training error, when it should
be similar to the testing error instead.

3. Baseline

3.1. K-Nearest Neighbours

The k-Nearest Neighbours algorithm (k-NN) is a non-
parametric method used for classification and regres-
sion. [1] We will be using it for classification. The input
consists of the k closest training examples in the feature
space. The output is a class membership.

An object is normally classified by a majority vote of its
neighbours, with the object being assigned the class most
common among its k nearest neighbours. In our case, we
accepted the classification as accurate so long as the correct
label was within the set of neighbours.

3.2. K-means

k-means clustering is a method of vector quantization. It
aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean,
also called a cluster centre. This results in a partitioning of
the data space into Voronoi cells.

The cluster centres are first distributed randomly. Then
their positions are re-adjusted to better represent the mean
point of the cluster members. This results in some members
shifting from one cluster to another, so the re-adjusting is
iterated several times to get the final position of the centres.
Since the initial centres are randomly distributed and only
find local optimums, this process is not deterministic. The
training might be done multiple times with different initial
states in order to get results closer to the global optimum.

3.3. Results

Figure 2. KNN and K-means Baseline Retrieval Accuracy

4. Improved Approach
4.1. Distance Metric Learning

Metric learning aims to find a distance function over dat-
apoints. A metric or distance function has to obey four ax-
ioms: non-negativity, identity of indiscernibles, symmetry
and subadditivity. These axioms are mathematically defined
in Appendix A.

We aim to learn a metric which minimizes the distance
between datapoints in related groups, and maximizes the
distance between datapoints in unrelated groups.

4.2. Mahalanobis Distance Learning

The general form for the Mahalanobis pseudo metrics is

dM(x1 − x2) = (x1 − x2)TM(x1 − x2) (1)

=‖ x1 − x2 ‖2M (2)

If M can be written in the form M = LTL then the Maha-
lanobis distance is just the squared Euclidean distance after
applying the linear transformation L

dA(x1 − x2) =‖ L(x1 − x2) ‖22 (3)

5. Principal Component Analysis
Principal Component Analysis (PCA) computes an or-

thogonal transformation, in order to project data onto a
set of linearly uncorrelated variables. These variables are
called principal components.

Principal components are chosen such that they maxi-
mize the variance between data points. The basis of the
principal component space is formed from the M eigenvec-
tors that correspond to the M largest eigenvalues of the co-
variance matrix of the training data. In other words, each

2



succeeding component has the highest variance possible un-
der the constraint that it is orthogonal to the preceding com-
ponents.

max
L

Tr(LTCL) subject to: LLT = I (4)

PCA is used for reducing the dimensionality of the fea-
ture space. This is desirable for avoiding overfitting and
reducing computational load. It avoids overfitting because
we increase the number of datapoints per dimension in our
dataset (since the size of the training set stays constant). It
reduces computational load since we are losing information,
but we are doing it with an objective function loses only the
most irrelevant information.

Need input data, ML problem, objective function (can
find), loss function (Subject to the constraint that L defines
a projection matrix, see Lin Alg?)???

Where the optimization has a closed form solution of the
the M eigenvectors that correspond to the M largest eigen-
values of the co-variance matrix.

- Unsupervised metric

6. Mahalanobis Metric Learning for Cluster-
ing

Mahalanobis Metric learning for Clustering (MMC) was
designed to learn a metric to improve the performance of
clustering algorithms such as K-means, it achieves this by
minimizing the distances between similarly labeled inputs,
and maximizing the distance between differently labeled in-
puts. This is formulated as the minimization of the sum of
the squared distances between pairs of similar points, whilst
constraining the the sum of squared distances between pair
of different points to be greater than some margin.

6.1. Problem Formulation

Define the training subset as the set X such that data
points (xi, xj) ∈ X then we can construct the sets S,D
containing pairs of points (xi, xj) such that

(xi, xj) ∈ S if xi ,xj are similar (5)
(xi, xj) ∈ D if xi ,xj are ’dissimilar’ or not in S. (6)

Optimization problem:

min
M

∑
(xi,xj)∈S

‖ xi − xj ‖2M (7)

s.t.
∑

(xi,xj)∈D
‖ xi − xj ‖2M≥ 1, (8)

M ≤ 0 (9)

Where equation 7 ensures M does not project the data set to
a single point.

Note that the constraints (7) and (8) are convex, there-
fore this optimization problem is convex, allowing us to de-
rive a global minimum. By restricting M to be a diagonal

matrix, this optimization can be solved efficiently using the
Newton-Raphson method.

6.2. Implementation

The following procedure was followed to implement
MMC on the given dataset:

1. With the features of the training images as the input,
optimize M as per the constraints defined in equations
(8,9).

2. Using M = LTL, perform the linear transform L on
features of the query and gallery images.

3. Perform k-NN on the MMC transformed query and
gallery features to evaluate the retrieval accuracy.

6.3. Initial Results

Figure 3. KNN + MMC compared to the baseline for a different
number of constraints

The number of constraints is a measure of how many
pairs of similar points are used to optimize M and is a pa-
rameter of the function used to implement MMC. Note how
the use of MMC does not result in improvement on the base-
line when evaluated using the kNN retrieval accuracy. This
is further discussed in section 8.

6.4. K-means + MMC

As suggested in [2] we used MMC to learn a distance
metric to bring similar points together, before applying the
K-means algorithm described in section 3.2 to cluster the
data. From this, we expect an improvement on baseline K-
means, as MMC will pull similar points closer together, re-
ducing the euclidean distance between then, leading to the
generation of most informative cluster centres from the K-
means algorithm.

3



6.5. Results of K-means + MMC

Figure 4. Improved Approach for K-means.

7. Large Margin Nearest Neighbour
The Large Margin Nearest Neighbour (LMNN) model

has been specifically conceived to learn a Mahalanobis dis-
tance metric to improve the accuracy of kNN classifica-
tion. The main difference between LMNN and MMC is
that MMC learns a metric to minimize distances between all
pairs of similarly labelled samples. In comparison, LMNN
learns a metric that is optimized so that k-nearest neigh-
bours belong to the same class, and samples from different
classes are separated by a large margin.

7.1. Approach

kNN classification accuracy increases when data points
which have the same label as the input point xi are closer
than differently labelled points. We define target neighbours
(denoted xj) of xi before training, where target neighbours
are data points we desire to bring closest to xi during train-
ing. We also define an imposter xl as any differently la-
belled input such that

‖ L(xi − xj) ‖2≤‖ L(xi − xj ‖2 +1 (10)

During training, the imposter is pushed outside the margin
defined.

7.2. Problem Formulation

The loss function formulated for LMNN in terms of the
linear transformation L is not convex, therefore the results
of an optimization function such as gradient descent will
depend on initial estimates of L and may only find local
minima rather than the global optimum. To overcome this,
the problem is reformulated using Semi-definite Program-
ming (SDP) over a positive semi-definite matrixM = LTL.
The cost function reformulated in terms of the Mahalanobis
metric M is shown in equation (11), this function is now
convex and can be efficiently optimized.

ε(M) = (1− µ)
∑
i,j

dM (xi, xj)

+ µ
∑
i,j

∑
l

(1− yil)[1 + dM (xi, xj)− dM (xi, xl)]+

(11)

Where µ is a regularization parameter to prevent over-
fitting. Since this model is not sensitive to µ[3], we kept
µ constant at 0.5.

Note that the cost function has two competing terms.
The 1st term penalizes large distances between the input
point and target neighbours, the second term penalizes cases
where an imposter breaches the perimeter + margin separa-
tion distance defined by the input and target data points. The
indicator variable yil is defined as:

yil =

{
1, iff yi = yl.

0, otherwise.
(12)

The SDP optimization problem is to minimize:

(1−µ)
∑

(i,j)
dM (xi−xj) +µ

∑
i,j,l

(1− yil)ξijl (13)

subject to:

dM (xi − xl)− dM (xi − xj) ≥ 1− ξijl (14)
ξijl ≥ 0 (15)
M ≥ 0 (16)

Where the slack variable (ξijl ≥ 0) is introduced to monitor
the extent that equation (10) is violated.

7.3. Implementation

Before implementing LMNN on the data set, PCA was
used to reduce the dimension of the inputs from 2048 to 512
(xi ∈ R2048 → xi ∈ R512) in order to reduce computation
time. PCA takes the training, query and gallery features
as input and returned the transformed training, query and
gallery features (ΩtrainingPCA,ΩqueryPCA,ΩgalleryPCA)
as output.

The following procedure was followed to implement
LMNN on the PCA transformed dataset:

1. With the input ΩtrainingPCA, optimize M as per the
constraints defined in equations (12,13,14).

2. Using M = LTL, perform the linear transform L on
ΩqueryPCA and ΩgalleryPCA.

3. Perform k-NN on the LMNN transformed
ΩqueryPCA and ΩgalleryPCA to evaluate the re-
trieval accuracy.

4



Method Computation Time(s)
LMNN alone 419.6
PCA (M=512) + LMNN 38.45

Table 1. Comparison of LMNN computation time with and with-
out PCA

7.4. Results

Figure 5. LMNN Accuracy when k-NN = 3.

8. Conclusions

8.1. Feature Extraction

The features were extracted from images by training
ResNet50 on the training set and then passing both training
and test sets through exactly the same network. [4] Since
our validation set was extracted from our training set, its
results were unreliable.

Another consequence of the feature extraction process
was that it was very difficult to improve on the baseline
method. The neural network was trained such that images
with the same labels had very similar features extracted, and
images with different labels had very different features ex-
tracted. By definition, this is optimizes the features for the
use of euclidean as a metric. For this reason, our baseline
methods performed very well.

8.2. Metric Learning

Discuss results

8.3. Training and Testing

Algorithms are trained using the features vectors split
into the training set provided. For testing the query and
gallery subsets were used.

9. Appendix

A. Properties of a Metric
For distance metric d;

d(x,y) ≥ 0

d(x,y) = 0 ⇐⇒ x = y

d(x,y) = d(y,x)

d(x, z) ≤ d(x,y) + d(y, z)

No. of Principal Components, M 39 63 116 200 245 363
NN 54.499 58.97 58.33 58.97 59.6 60.26
Alternative Method 73.07 73.07 73.07 73.07 73.07 73.04

Table 2. Accuracy(%) for NN and Alternative Method.

K-means - clusters generally modelled as normal or uni-
modal distributions - parametric - proves the importance of
our per-processing steps.

- Account for images taken of same person with same
camera in the gallery set

References
[1] N. S. Altman. An introduction to kernel and nearest-

neighbor nonparametric regression. The American Statisti-
cian, 46(3):175–185, 1992.

[2] M. I. J. Eric P. Xing, Andrew Y. Ng and S. Russell. Dis-
tance metric learning, with application to clustering with side-
information.

[3] L. K. S. Kilian Q. Weinberger. Distance metric learning for
large margin nearest neighbor classification, 2009.

[4] M. Nazarczuk. Suspiciously high validation error, 2018. Men-
tioned on the discussion boards.

5


