
Pattern Recognition - Coursework 1

Koral Hassan, Mohika Gupta
Imperial College London

Kensington, London SW7 2AZ
kbh15@ic.ac.uk, mg5215@ic.ac.uk

Abstract

Several approaches to the problem of facial recognition
are investigated. Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) are used for dimen-
sionality reduction, and methods such as Nearest Neigh-
bour (NN) are used for classification. Our research on the
methods to maximize recognition accuracy are described in
detail.

1. The Dataset
We have been provided with a dataset of N = 520 im-

ages that correspond to L = 52 faces. There are 10 images
of each face respectively. All images are centred and of the
same size, so we do not need to normalize (e.g. using eye
locations) for scale, orientation, translation etc. The images
have height H = 56 and width W = 46. Figure 1 shows
one of the images in the dataset as an example. Each image
In ∈ RH×W is represented as a vector xn ∈ RD×1 where
D = 2576.

Figure 1. Examplar image of a face from dataset.

1.1. Train Test Split

The dataset is too small for cross-validation. It is also
too small to be worth setting aside a validation set. In this
case, we will only split the data into a training set of size
Ntrain and a testing set of size Ntest. We will set aside
30% of our data for testing, which is a reasonable partition
and an industry standard. From here on wards, we will refer
to these subsets as Ntrain = (1 − 0.3) × 520 = 364 and
Ntest = 0.3 × 520 = 156, containing the images used for

training and testing respectively.
We split the data in a stratified fashion to obtain sets that

are more representative, i.e the training set comprised of
70% of the total number of images in each class.

2. Eigenfaces
Each image in our dataset is represented as a point in a

D-dimension feature space, where D is very large. In this
case, D = 2576 and each feature contains information for
one pixel of the image. However, applying facial recogni-
tion algorithms on such a high dimensional feature space is
computationally inefficient as many of these features mea-
sure related properties and are therefore redundant. For
more efficient facial recognition, we will project the data
onto a new subspace of dimension M where M << D,
in order to maximize the projected data variance. This is
achieved by extracting the most important features and us-
ing these in our classification algorithms. This will require
compromising on reconstruction accuracy as we will lose
the least significant details of the images.

2.1. Procedure:

PCA defines the subspace spanned by the eigenvectors
ui of the covariance matrix S corresponding to the M
largest eigenvalues to be the subspace with the largest data
variance.

First we subtract the mean face x̄ from each image in the
training dataset to normalize our training data:

φn = xn − x̄

where

x̄ =
1

N

N∑
n=1

xn

The difference between one of the faces and the nor-
malised image is visualized in Figure 2 as an example.

We can now compile our matrix A where

A = [φ1, φ2, ..., φNtrain
] ∈ RD×Ntrain

1

Figure 2. Difference between x1 and , φ1.

We know that

rankA ≤ min(D,N) = Ntrain = 364

since A ∈ RD×Ntrain . We expect

rankA ≤ Ntrain − 1 = 363

due to the mean face being subtracted. Due to the iden-
tity

rankA = rankAAT
= rankS

we expect S to have at most 363 non-zero eigenvalues
out of 2576.

2.2. Naive PCA

In this application of PCA, the eigenvectors of the co-
variance matrix S = 1

NAA
T are calculated directly. Since

S is a positive-definite symmetric matrix, we expect its
eigenvalues to be real and positive. Furthermore, we expect
S to only have rankS = 363 non-zero eigenvalues. We
instead found that some of the eigenvalues were complex
and negative. This is due to limitations in the software, as
the complex and negative values were in the order of 10−13
and below they can be safely approximated to zero. We can
reassure ourselves of this by calculating that rankS = 363
as expected.

Figure 3. Eigenfaces.

Figure 3 illustrates some of the eigenvectors as eigen-
faces.

Figure 4. Eigenvalues in order of decreasing magnitude.

Figure 4 shows the exponential decrease in the magni-
tude of the eigenvalues. In fact, there are only 50 out of
363 non-zero eigenvalues that are at least 1% the magni-
tude of biggest one. Note how the eigenfaces corresponding
to eigenvalues of lower magnitude contain a significantly
lower amount of face information, and when the eigenval-
ues are zero (as shown in the smallest image), the eigenfaces
contain no information relevant to a face at all, and therefore
can be discarded. This leaves a maximum of 363 eigenfaces
to be used for recognition.

2.3. Reconstruction

The M eigenvectors corresponding to the M largest
eigenvalues will be our principal components and the ba-
sis of the subspace we will project our images onto in order
to maximize variance.

Table 1 demonstrates how many principal components
are needed for a given reconstruction accuracy, which is
also visualized with the decreasing levels of detail in Fig-
ure 6.

Reconstruction Accuracy Number of Principal Components, M
80% 26
85% 39
90% 63
95% 116
99% 245

Table 1. Reconstruction accuracy thresholds.

It is observable in Figure 5 that after a point, a large in-
crease in the number of principal components used does not
lead to a large increase in reconstruction accuracy. This
is expected as the eigenvectors corresponding to eigenval-
ues of lower magnitude only contain low level information
about the faces, such as fine details and shadows, as shown
in Figure 6.

2

Figure 5. Cumulative variance of M eigenvalues.

Figure 6. Reconstructed faces with M = 245 and M = 116

2.4. Efficient PCA

Now let us use the low-dimensional computation of
eigenspace instead. In this implementation we calculate the
eigenvectors ui of 1

NA
TA, which is a Ntrain × Ntrain as

opposed to the D × D covariance matrix. The eigenvec-
tors vi of 1

NA
TA ∈ RN×N are related to the N biggest

eigenvectors ui of S such that Avi = ui. This is advanta-
geous because calculating the eigenvectors of S ∈ RD×D

is computationally expensive, both in terms of memory and
computation time. The computation times of the naive and
efficient PCA are compared in Table 2.

Computation Method Performance (seconds)
Direct 61.97
Low Dimensional 0.88

Table 2. Comparison of direct and low dimensional computations.

Although the direct calculation of the eigenvalues and
eigenvectors of S is more straightforward than the low di-
mension computation, clearly it is significantly more effi-
cient (70.4 times faster) than the naive implementation.

Note that despite the calculation methods of the eigenval-
ues of S being different, the resulting non-zero eigenvalues
for both implementations are almost identical with negligi-
ble difference (in the order of 10−10 and lower.

Figure 7. Comparison of Eigenvalues computed using Naive and
Efficient PCA

2.5. Classification Methods

The use of two different recognition algorithms, Near-
est Neighbour (NN) and an alternative method which min-
imized reconstruction error were explored. NN classifies
images by comparing the projection of the test image onto
the principal space to the projections of all the training data
and selecting the class of the image with the minimum er-
ror:

e = minn ‖ ωn − ω ‖, n = 1, ..., Ntrain

In this implementation, the principal space is calculated
over all training data.

The alternative method used projects the test image onto
the principal subspace computed per class. The image is
then reconstructed based on the principal components for
each class and the class of the image which minimizes the
reconstruction error is assigned. The reconstruction error is
defined as : argimin ‖ x − x̃ ‖. Comparisons of the clas-
sification accuracy and computation time for both methods
are shown in Table ?? and Table 4.

No. of Principal Components, M 39 63 116 200 245 363
NN 54.499 58.97 58.33 58.97 59.6 60.26
Alternative Method 73.07 73.07 73.07 73.07 73.07 73.04

Table 3. Accuracy(%) for NN and Alternative Method.

No. of Principal Components, M 39 63 116 200 245 363
NN 0.039 0.041 0.079 0.0869 0.110 0.177
Alternative Method 1.83 2.170 2.530 2.634 2.83 3.16

Table 4. Computation Time(seconds) for NN and Alternative
Method.

This can also be visualized in the confusion matrices
(Figure 8) for both methods for the case M = 200. Note
how the confusion matrix for NN is more scattered than the
Alternative method, i.e. NN makes more incorrect predic-
tions.

3

Figure 8. Confusion Matrices for Alternative and NN Classifica-
tion

An example of a successfully recognized test image for
both classification methods is shown in Figure 9.

Figure 9. Successful Classification of an image in class 33

Figure 10 gives an example of a face that was incorrectly
classified by NN but correctly classified by the Alternative
Method.

Figure 10. Incorrect Classification by NN

This proves the superiority of the Alternative Method
over NN classification. Since NN classification does not
take into account different classes when computing the prin-
cipal space, so it is easy to incorrectly assign people with
similar features to the same class. In comparison, the Al-
ternative Method calculates the principal space over each
class, allowing the differentiation between similar images
from different classes as shown in Figure 10.

3. PCA-LDA
The variance among faces in a dataset may come from

distortions such as shadowing, facial expression, pose etc.

In some cases, these variations may be larger than the vari-
ances between standard faces. For this reason, we investi-
gate the use of Linear Discriminant Analysis (LDA) to im-
prove our face recognition accuracy.

3.1. LDA

LDA aims to find the projection Wopt that optimally
separates the data of different classes by minimizing the
Within- Class Scatter matrices SW and maximizing the Be-
tween Class Scatter matrices SB where:

Sw =

C∑
i=1

∑
x∈Ci

(x−mi)(x−mi)
T

and

SB =

C∑
i=1

(mi −m)(mi −m)T

Where mi = the mean image of class Ciand m is the av-
erage face over the whole dataset. In comparison, the op-
timal projection generated from PCA maximizes both SB

and SW .

3.2. Procedure

LDA generates the optimal projection space for classifi-
cation by taking the eigenvectors corresponding to theMlda

largest eigenvalues of the following generalized eigenvector
problem:

S−1W SBw = λw

However, direct implementation of LDA is not possible in
our dataset due to Ntrain << D. Theoretically, rankSB

=
C − 1 and rankSW

= Ntrain − C. However, since
Sw, SB ∈ RD×D, these matrices are not full rank, hence
solutions of the generalized eigenvector problem cannot be
computed. To enable this computation we must project our
training dataset from a D-dimensional space to an Mpca di-
mensional space using PCA where Mpca ≤ Ntrain − C.
This makes SW full-rank, allowing for the use of LDA to
further reduce the dimension to Mlda ≤ C − 1 by taking
the eigenvectors corresponding to the Mlda largest eigen-
vectors wi of:

(WT
pcaSWWpca)−1(WT

pcaSBWpca)w = λw

Finally, the optimal projection space (fisherface) is defined
as:

WT
opt = WT

pcaW
T
lda

We then use NN classification to implement face recogni-
tion. We expect the accuracy from the Fisherface imple-
mentation to be higher than PCA alone as Fisherfaces ac-
counts for the classes for the images and will therefore be
able to recognize faces with higher accuracy.

4

3.3. Results

Upon implementing PCA-LDA we found rankSW
=

312 and rankSB
= 51 as expected. Our results from the

implementation of PCA-LDA for varied values ofMpca and
Mlda are shown in Table 5.

MLDA vs MPCA 311 200 1006 10
51 52.6% 78.2% 53.2% 54.4%
25 50.8% 68.5% 52.7% 54.0
10 49.4% 57.4% 51.1% 53.9

Table 5. PCA-LDA accuracy for different hyper-parameter values.

Notice how the accuracy of PCA-LDA decreases for
very high and very low values of Mpca, this is as expected.
For high values of Mpca, there has been little removal or
redundant features, making the model susceptible to error
due to outliers, while low values of Mpca remove too much
information from the feature space, making it difficult to
distinguish classes of faces from one another.

4. PCA Ensemble
Ensemble learning aims to provide a solution to over-

fitting. Over-fitting a data set in when a learned model is
overly complex and fits too closely to the training dataset.
When applied to a test dataset, this model then behaves
poorly as it has been developed to perfectly fit only the
dataset it has been trained on, we say the model has poor
generalization.

A proposed solution to over-fitting is ensemble learning.
Ensemble learning takes multiple overly complex models
trained on the same data (with perturbations) and combines
them to give output a combined model. Since the perturba-
tions between models is random, individual model predic-
tions are de-correlated, resulting in a combined model with
improved generalization.

4.1. Bagging

We were able to generate randomness between models
by randomly sampling the training set (i.e. bagging). We
applied bagging with replacement on a number of subsets
Tj with each subset containing nt = (| Tj |= ρ) sam-
ples. In order to keep the sampled subsets consistent with
the original use of PCA we opted to sample an equal amount
of each class for each subset.

After generating our subsets Tj we applied PCA and NN
classification to each bag. We then applied majority voting
to the results to generate our final class prediction. Major-
ity voting takes the predicted classes generated from each
model and assigns the class with the highest ’number of
votes’ to each test image.

Theory dictates that the expected error of the final class
assignment (i.e. the error of the committee machine) is

lower than that of the average error across individual mod-
els. This because, as explained previously, each individual
model is over fitting the data in each subset and therefore
has poor generalization and accuracy when given test im-
ages.

4.2. Results

The results generated from varying the number of sub-
sets (or base models) Tj and the number of samples in each
bag ρ are shown in Figure 11. It is clear that after an ini-
tial jump in the majority voting accuracy, we start to see
increasingly diminishing returns from adding more bags.

Figure 11. Committee Machine Accuracy for varied T

Number of images per bag vs Number of bags 3 6 9 12 15 20
156 57.2% 58.4% 58.5% 59.0% 59.4% 59.1%
260 64.7% 66.6% 65.8% 66.4% 67.0% 66.2%
364 65.9% 70.0% 69.2% 69.6% 69.4% 71.0%

Table 6. Average accuracies of individual models.

Number of images per bag vs Number of bags 3 6 9 12 15 20
156 52.7% 58.5% 52.7% 59.7% 59.7% 56.5%
260 65.5% 67.4% 64.8% 69.8% 71.9% 68.1%
364 65.6% 70.0% 70.7% 70.6% 72.6% 73.2%

Table 7. Committee machine accuracies.

5

